Current solutions to diagnose bacterial infections though reliable are often time-consuming, laborious and need a specific laboratory setting. There is an unmet need for bedside accurate diagnosis of infectious diseases with a short turnaround time. Moreover, low-cost diagnostics will greatly benefit regions with poor resources. Immunoassays and molecular techniques have been used to develop highly sensitive diagnosis solutions but retaining many of the abovementioned limitations. The detection of bacteria in a biological sample can be enhanced by a previous step of capture and enrichment. This will ease the following process enabling a more sensitive detection and increasing the possibility of a conclusive identification in the downstream diagnosis. This review explores the latest developments regarding the initial steps of capture and enrichment of bacteria from complex samples with the ultimate goal of designing low cost and reliable diagnostics for bacterial infections. Some solutions use specific ligands tethered to magnetic constructs for separation under magnetic fields, microfluidic platforms and engineered nano-patterned surfaces to trap bacteria. Bulk acoustics, advection and nano-filters comprise some of the most innovative solutions for bacteria enrichment.