1)人脸采集模块,人脸图像的来源可以是来自于本地文件、网络URL或是视频帧,这次设计利用 OpenCV函数从文件和摄像头中获取。2)人脸矫正的英语翻译

1)人脸采集模块,人脸图像的来源可以是来自于本地文件、网络URL或是视

1)人脸采集模块,人脸图像的来源可以是来自于本地文件、网络URL或是视频帧,这次设计利用 OpenCV函数从文件和摄像头中获取。2)人脸矫正模块,由于截取的人脸图像很有可能是歪的,比如歪头,为了提高识别准确度,需要用到OpenCV 中提供的一个仿射变换方法,利用检测到的人脸关键点把截取的人脸矫正到一个标准的位置。3)人脸检测模块,在该模块用来对输入图像进行预处理,判断图片中的人脸数量,以及检测出人 脸所在的位置和人脸关键点坐标,并把人脸图像从背景中截取下来。同时在现实场景中应保持较好的鲁棒性和实时检测的性能。 4)人脸识别模块,人脸识别模块一般由两部分组成,即人脸特征提取和建立人脸索引库。在得到预处理完成的人脸图像后,将人脸输入到预训练好的模型中去,提取出512维的人脸特征,并为它建立索引。5)人脸属性模块,首先对待检测的人脸图像进行预处理,得到一个较为标准的人脸图像.
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
1) Face acquisition module. The source of face images can be from local files, network URLs or video frames. This time the design uses OpenCV functions to obtain from files and cameras. <br>2) Face correction module, because the intercepted face image is likely to be crooked, such as tilting the head, in order to improve the recognition accuracy, an affine transformation method provided in OpenCV needs to be used, using the key of the detected face Click to correct the intercepted face to a standard position. <br>3) Face detection module, which is used to preprocess the input image, determine the number of faces in the picture, and detect the location of the face and the coordinates of the key points of the face, and remove the face image from the background Intercepted down. At the same time, it should maintain good robustness and real-time detection performance in real scenes. <br>4) Face recognition module. The face recognition module generally consists of two parts, namely, facial feature extraction and the establishment of a face index database. After getting the pre-processed face image, input the face into the pre-trained model, extract 512-dimensional face features, and build an index for it. <br>5) The face attribute module first preprocesses the face image to be detected to obtain a more standard face image.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
1) Face acquisition module, the source of face images can be from local files, network URLs or video frames, this design uses OpenCV functions from files and cameras.<br>2) Face correction module, because the intercepted face image is likely to be crooked, such as crooked head, in order to improve the accuracy of recognition, it is necessary to use open CV to provide an affine transformation method, the use of detected face key points to intercept the face corrected to a standard position.<br>3) Face detection module, in which the module is used to pre-process the input image, determine the number of faces in the picture, as well as detect the location of the face and the key point coordinates of the face, and the face image from the background. At the same time, in the real-world scenario should maintain a good robustness and real-time detection performance. <br>4) Face recognition module, face recognition module is generally composed of two parts, that is, face feature extraction and the establishment of face index library. After obtaining the preprocessed face image, the face is entered into the pre-trained model, the 512-dimensional face feature is extracted and indexed.<br>5) Face attribute module, first of all, the detection of face image pre-processing, to get a more standard face image.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
1) Face acquisition module, the source of face image can be from local files, network URL or video frames, this design uses opencv function to obtain from files and cameras.<br>2) In face correction module, because the intercepted face image is likely to be crooked, such as crooked head, in order to improve the recognition accuracy, we need to use an affine transformation method provided by OpenCV to correct the intercepted face to a standard position by using the detected face key points.<br>3) Face detection module, which is used to preprocess the input image, judge the number of faces in the image, detect the position of the face and the coordinates of the key points of the face, and intercept the face image from the background. At the same time, it should keep good robustness and real-time detection performance in the real scene.<br>4) Face recognition module, face recognition module is generally composed of two parts, namely face feature extraction and face index database. After the preprocessed face image is obtained, the face is input into the pre trained model, and 512 dimensional face features are extracted and indexed.<br>5) In the face attribute module, a standard face image is obtained by preprocessing the detected face image<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: