The development of the oil industry brings the critical problem of oce的简体中文翻译

The development of the oil industry

The development of the oil industry brings the critical problem of ocean pollution by oil spill or fossil fuels. The use of materials for water/oil separation is one of the effective approaches to solve this crisis. Polyvinyl alcohol (PVA) has been used to prepare water/oil separation materials. Currently, glutaraldehyde has been employed as the cross-linking agent, which is well known to be toxic and environmentally unfriendly. Moreover, it is difficult to deal with the disposal of the Across-linked material. Here, we propose a strategy of fabricating macroporous material which was prepared by PVA and sodium silicate (Na2SiO3) in aqueous solution. Following through with the one-step method of sol–gel reaction of hydroxyl groups with trimethoxy(octadecyl)silane, the low surface energy substance was grafted on the macroporous material and a super-hydrophobic macroporous membrane for water/oil separation was prepared. As oil sorbent, the as-prepared dried super-hydrophobic PVA/Na2SiO3 porous materials (PSD6S) have the adsorption capacity of 1.8–7.0 g/g for oil uptake, which depends on the type of oil liquid. Typically, the separation efficiency of this material could reach more than 99% even after 10 times of use without the help of ambient pressure. It is noteworthy that the as-prepared samples could be easily decomposable and dissolvable completely in acidic medium at a rapid rate.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
The development of the oil industry brings the critical problem of ocean pollution by oil spill or fossil fuels. The use of materials for water/oil separation is one of the effective approaches to solve this crisis. Polyvinyl alcohol (PVA) has been used to prepare water/oil separation materials. Currently, glutaraldehyde has been employed as the cross-linking agent, which is well known to be toxic and environmentally unfriendly. Moreover, it is difficult to deal with the disposal of the Across-linked material. Here, we propose a strategy of fabricating macroporous material which was prepared by PVA and sodium silicate (Na2SiO3) in aqueous solution. Following through with the one-step method of sol–gel reaction of hydroxyl groups with trimethoxy(octadecyl)silane, the low surface energy substance was grafted on the macroporous material and a super-hydrophobic macroporous membrane for water/oil separation was prepared. As oil sorbent, the as-prepared dried super-hydrophobic PVA/Na2SiO3 porous materials (PSD6S) have the adsorption capacity of 1.8–7.0 g/g for oil uptake, which depends on the type of oil liquid. Typically, the separation efficiency of this material could reach more than 99% even after 10 times of use without the help of ambient pressure. It is noteworthy that the as-prepared samples could be easily decomposable and dissolvable completely in acidic medium at a rapid rate.
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
The development of the oil industry brings the critical problem of ocean pollution by oil spill or fossil fuels. The use of materials for water/oil separation is one of the effective approaches to solve this crisis. Polyvinyl alcohol (PVA) has been used to prepare water/oil separation materials. Currently, glutaraldehyde has been employed as the cross-linking agent, which is well known to be toxic and environmentally unfriendly. Moreover, it is difficult to deal with the disposal of the Across-linked material. Here, we propose a strategy of fabricating macroporous material which was prepared by PVA and sodium silicate (Na2SiO3) in aqueous solution. Following through with the one-step method of sol–gel reaction of hydroxyl groups with trimethoxy(octadecyl)silane, the low surface energy substance was grafted on the macroporous material and a super-hydrophobic macroporous membrane for water/oil separation was prepared. As oil sorbent, the as-prepared dried super-hydrophobic PVA/Na2SiO3 porous materials (PSD6S) have the adsorption capacity of 1.8–7.0 g/g for oil uptake, which depends on the type of oil liquid. Typically, the separation efficiency of this material could reach more than 99% even after 10 times of use without the help of ambient pressure. It is noteworthy that the as-prepared samples could be easily decomposable and dissolvable completely in acidic medium at a rapid rate.
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
石油工业的发展带来了石油泄漏或化石燃料污染海洋的严重问题。利用材料进行油水分离是解决这一危机的有效途径之一。用聚乙烯醇(PVA)制备了油水分离材料。目前,戊二醛已被用作交联剂,众所周知,它具有毒性和对环境不友好的特点。此外,很难处理交叉连接材料的处置。本文提出了一种在水溶液中用聚乙烯醇(PVA)和硅酸钠(Na2SiO3)制备大孔材料的方法。通过羟基与十八烷基三甲氧基硅烷的一步溶胶-凝胶反应,将低表面能物质接枝到大孔材料上,制备了超疏水大孔油水分离膜。制备的超疏水PVA/Na2SiO3多孔材料(PSD6S)作为吸油剂,其吸油量为1.8-7.0g/g,这取决于油液的类型。通常情况下,这种材料的分离效率可以达到99%以上,即使使用10次,没有环境压力的帮助。值得注意的是,所制备的样品在酸性介质中容易分解和快速完全溶解。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: