Figure 4 shows the polarization-field (P-E) hysteresis loop of the BT-75nm. A hysteresis loop indicates the ferroelectric switching with a remanent polarization, Pr, of 15.0 µC cm-2 and coercive, EC, of 18.6 kV cm-1. There are very few reports for the “macroscopic”ferroelectric switching behavior in the BaTiO3 nanocrystalline ceramics[37,38,49,50]. The bulk P-E hysteresis were often the nearly linear so that evidence of the ferroelectric switching in the nano-grain ceramics has been limited in the “local” phenomena by the piezoresponse force microscopy.[49,50] The reason why the BT-75nm in the present work can still show macroscopic ferroelectric switching behavior is not clear. It could be owing to sharp grain boundary microstructures that minimize the dilution of ferroelectric properties resulting from the non-ferroelectric grain boundary layers, or simply due to relatively larger grains compared to 20-50 nm in the ref. [38,49,50]. In contrast to the previously thought, recent studies indicate the nanostructure could enhance the ferroelectric properties[51,52]. The understanding of the structure-property relationship in the BaTiO3 nanocrystalline ceramics is under further investigation and is beyond the scope of this report.
图4显示了BT-75nm的偏振场(PE)磁滞回线。磁滞回线表示铁电开关的剩余极化强度Pr为15.0 µC cm-2,矫顽力EC为18.6 kV cm-1。关于BaTiO3纳米晶陶瓷中“宏观”铁电开关行为的报道很少[37,38,49,50]。PE的整体磁滞通常接近线性,因此,压电响应力显微镜已将纳米晶粒陶瓷中铁电转换的证据限制在“局部”现象中。[49,50] BT-75nm的原因在于目前的工作仍能表明宏观铁电开关行为尚不清楚。可能是由于尖锐的晶界微结构使由非铁电晶界层引起的铁电特性的稀释最小化,或仅仅是由于与ref中的20-50 nm相比,晶粒相对较大。[38,49,50]。与以前的想法相反,最近的研究表明纳米结构可以增强铁电性能[51,52]。对BaTiO3纳米晶陶瓷中结构-性能关系的理解正在进一步研究中,这超出了本报告的范围。
正在翻译中..
图4显示了BT-75nm的偏振场(P-E)滞回曲线。磁滞回线表示铁电开关的剩余极化率Pr为15.0μC cm-2,矫顽性EC为18.6kv cm-1。关于钛酸钡纳米晶陶瓷的“宏观”铁电开关行为的报道很少[37,38,49,50]。由于体P-E磁滞往往是近似线性的,因此压电响应力显微镜只能在“局部”现象中观察到纳米晶粒陶瓷中的铁电开关现象。[49,50]目前工作中BT-75nm仍能显示宏观铁电开关行为的原因尚不清楚。这可能是由于晶界组织锐利,使非铁电晶界层对铁电性能的稀释程度降至最低,或者仅仅是由于相对较大的晶粒(参考文献[38,49,50]中的20-50nm)。与之前的想法相反,最近的研究表明纳米结构可以提高铁电性能[51,52]。对钛酸钡纳米晶陶瓷结构与性能关系的认识尚在进一步研究中,超出了本报告的范围。<br>
正在翻译中..