2.构建基于GAN的战场目标图像数据生成模型为解决战场目标图像识别研究中存在的模型训练数据不足问题,论文基GAN基本模型衍生出的数据生成模型的英语翻译

2.构建基于GAN的战场目标图像数据生成模型为解决战场目标图像识别研究

2.构建基于GAN的战场目标图像数据生成模型
为解决战场目标图像识别研究中存在的模型训练数据不足问题,论文基GAN基本模型衍生出的数据生成模型,结合陆军空中突击旅战场目标图像的特点,建立了能够实现三个不同域图像之间进行相互转换的战场目标图像数据生成模型。模型通过迁移学习的方法进行训练,利用采集的部分真实战场目标图像数据生成大量的虚拟战场目标图像数据,并通过实验验证了所建模型的可行性和生成数据的多样性。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
2. Construction of GAN battlefield target image data generation model based on <BR>data generated model to solve the problem of insufficient training data model image recognition based on battlefield targets exist in paper-based GAN basic model derived, the characteristics of the Army Air Assault Brigade battlefield target image , battlefield targets established model enables generating image data among three different image conversion between domains. Model training method by studying the migration of part of the real battlefield using the target image data collected for a large number of virtual battlefield target image data and experimental results verify the feasibility of the diversity of the model and generate data.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
2. Build a GAN-based battlefield target image data generation model In order to solve the problem of insufficient model training data in the field target image recognition research, the data generation model derived from the basic model of the paper is combined with the characteristics of the battlefield target image image of the Army Air Assault Brigade, and the battlefield target image data generation model can be used to convert between three different domain images. The model is trained by migration learning method, using some of the collected real battlefield target image data to generate a large amount of virtual battlefield target image data, and verifying the feasibility of the model and the diversity of the generated data.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
2. Build the data generation model of battlefield target image based on GaN<BR>In order to solve the problem of insufficient model training data in the research of battlefield target image recognition, the data generation model derived from the basic Gan model in this paper, combined with the characteristics of battlefield target image of Army Air Assault brigade, established the battlefield target image data generation model which can realize the mutual conversion of three different domain images. The model is trained by the method of transfer learning, and a large number of virtual battlefield target image data are generated by using part of the real battlefield target image data collected. The feasibility of the model and the diversity of the generated data are verified by experiments.<BR>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: