通过系统研究H2O2浓度对纳米金属铜粒子的沉积及刻蚀行为的影响,进一步研究其对硅片表面刻蚀形貌的影响规律。研究结果表明:双氧水浓度控制纳米金的英语翻译

通过系统研究H2O2浓度对纳米金属铜粒子的沉积及刻蚀行为的影响,进一步

通过系统研究H2O2浓度对纳米金属铜粒子的沉积及刻蚀行为的影响,进一步研究其对硅片表面刻蚀形貌的影响规律。研究结果表明:双氧水浓度控制纳米金属铜颗粒沉积在硅片表面的疏密程度和停留时间,并最终影响硅刻蚀过程为微区凹坑刻蚀 (分散铜颗粒) 还是整体刻蚀 (致密铜膜)。同时,随着H2O2的加入,刻蚀速率先升高后降低最后趋于平稳,刻蚀过程将导致四个阶段的结构演化。通过对铜催化化学刻蚀的机理和不同温度下H2O2浓度变化对硅片刻蚀形貌、反射率、刻蚀速率的影响研究,选取合适的反应速率(0.23μm/min)和低硅片减薄量(3.5μm),实现在金刚线切割n型单晶硅片上均匀倒金字塔结构的制备并表现出优异的减反射性能(R:7.2%)。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
By systematically studying the influence of H2O2 concentration on the deposition and etching behavior of nano-metal copper particles, further study its influence on the etching morphology of the silicon wafer surface. The research results show that the concentration of hydrogen peroxide controls the density and residence time of the nano-metal copper particles deposited on the surface of the silicon wafer, and ultimately affects whether the silicon etching process is micro-pit etching (dispersed copper particles) or overall etching (dense copper) membrane). At the same time, with the addition of H2O2, the etching rate first increases, then decreases and finally stabilizes. The etching process will lead to four stages of structural evolution. By studying the mechanism of copper catalyzed chemical etching and the influence of H2O2 concentration changes at different temperatures on the etching morphology, reflectivity, and etching rate of silicon wafers, the appropriate reaction rate (0.23μm/min) and low silicon wafer thinning were selected (3.5μm), to achieve the preparation of a uniform inverted pyramid structure on the diamond wire cut n-type single crystal silicon wafer and show excellent anti-reflection performance (R: 7.2%).
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
The influence of H2O2 concentration on the deposition and etching behavior of nanometallic copper particles is studied systematically, and the law of its influence on the etching of the surface of silicon wafers is further studied. The results show that the concentration of hydrogen peroxide controls the degree and dwell time of the deposition of nanometallic copper particles on the surface of the wafer, and ultimately affects whether the silicon etching process is micro-zone pit etching (dispersed copper particles) or overall etching (dense copper film). At the same time, with the addition of H2O2, the etching rate is first raised and then lowered and eventually leveled off, and the etching process will lead to the structural evolution of the four stages. By studying the effects of copper catalytic chemical etching and changes in H2O2 concentration at different temperatures on the shapeform, reflectivity and etching rate of silicon for a moment, the appropriate reaction rate (0.23 m/min) and low silicon sheet thinning (3.5 m) were selected to achieve uniform inverted pyramid structure preparation and excellent reflective performance (R:7.2%) on the gold-cut n-type monocrystalline silicon wafer.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
The influence of H2O2 concentration on the deposition and etching behavior of copper nanoparticles was systematically studied, and the influence of H2O2 concentration on the etching morphology of silicon wafer was further studied. The results show that the concentration of hydrogen peroxide controls the density and residence time of nano copper particles deposited on the surface of silicon wafer, and ultimately affects the etching process of silicon: Micro pit etching (dispersed copper particles) or overall etching (dense copper film). At the same time, with the addition of H2O2, the etching rate first increases, then decreases, and finally tends to be stable. The etching process will lead to four stages of structural evolution. The mechanism of copper catalyzed chemical etching and the influence of H2O2 concentration at different temperatures on the etching morphology, reflectivity and etching rate of silicon wafers were studied. The uniform inverted pyramid structure was fabricated on n-type single crystal silicon wafer by WEDM with appropriate reaction rate (0.23 μ M / min) and low wafer thinning amount (3.5 μ m), and excellent antireflection performance (R: 7.2%) was achieved.
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: