As the missile approaches to and locks on the challenging missile, it 的简体中文翻译

As the missile approaches to and lo

As the missile approaches to and locks on the challenging missile, it needs to change from mid-course guidance to terminal homing guidance [3]. Since the handover point is determined in consideration of missile performance such as the seeker detection range and scan angle, radar power, missile nose shape and sensor uncertainties pattern, no common value exists for the handover point. Whilst [7] supposes the terminal range as 20Km for ballistic missiles, [6] applies 500m in their common curvature guidance paper. In terms of time of the terminal phase rather than distance, it is generally the last 4 to 6 seconds of flight [3].However, in order to enhance the performance, we should consider all the key issues of the handover: target detection and tracking, guidance command saturation during the terminal phase and intercepting target before it strikes its object. Since the key issues are coupled with each other, theymust be considered together. For example, the handover and heading errors can be large due to the effect of environmentalxplicitly related to the target acquisition and terminal homing capabilities, but also have the property of trade-off: Each of them requires longer range to reduce their errors and increases the error of the other.In this paper, it is assumed that the terminal range for the handover is around 6Km (switch from uplink data to seeker data) to investigate the performance of the proposed cooperative missile guidance scheme. The handover range has been determined according to the seeker performances. However, in order to take into account potential guidance command saturations, terminal homing capabilities (capturability) and to ensure target interception before ground base destruction we propose in the following an original mid course guidance law design plus an orignal target allocation algorithm. The switch from mid course guidance to terminal guidance (in this case DGL/1) is no more synchronized with handover logics but with capturability logics. Therefore, we decoupled the handover logics (uplink to seeker switch) from the guidance law switch. The first logic is based on data accuracy and the second one on attainability capabilities. However, this approach may still not consider some other parameters as missile gimbal angle limitations (to be addressed in future study).
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
当导弹接近并锁定具有挑战性的导弹时,它需要从中途制导转向终端制导制导[3]。由于交接点是根据导弹性能来确定的,例如,导引头的探测范围和扫描角度,雷达功率,导弹机头形状和传感器不确定性模式,因此交接点不存在共同的值。[7]假设弹道导弹的终端射程为20Km,[6]在其共同曲率制导文件中适用500m。就终极阶段的时间而不是距离而言,通常是飞行的最后4至6秒[3]。<br>但是,为了提高性能,我们应该考虑切换的所有关键问题:目标检测和跟踪,终端阶段的制导命令饱和以及在目标到达目标之前拦截目标。由于关键问题是相互关联的,因此<br>必须一起考虑。例如,切换和航向误差可能由于<br>与目标获取和终端归位能力密切相关的环境影响而变大,但也具有权衡的性质:它们每个都需要更长的距离以减少误差并增加其他的错误。<br>在本文中,为了研究所提出的协同导弹制导方案的性能,假设切换的终端范围约为6Km(从上行链路数据切换到搜寻器数据)。切换范围已根据搜寻器的性能确定。但是,为了考虑到潜在的制导指令饱和度,终端归位能力(可捕获性)并确保在破坏地面基地之前对目标进行拦截,我们在下面提出了一种原始的中段制导律设计以及一种原始目标分配算法。从中间路线向导到终端向导(在本例中为DGL / 1)的切换不再与切换逻辑同步,而是与可捕获性逻辑同步。因此,我们将切换逻辑(到搜寻器切换的上行链路)与制导律切换解耦。第一种逻辑基于数据准确性,第二种逻辑基于可获得性功能。但是,这种方法可能仍未将其他一些参数视为导弹万向架角度限制(将在以后的研究中加以解决)。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
As the missile approaches to and locks on the challenging missile, it needs to change from mid-course guidance to terminal homing guidance [3]. Since the handover point is determined in consideration of missile performance such as the seeker detection range and scan angle, radar power, missile nose shape and sensor uncertainties pattern, no common value exists for the handover point. Whilst [7] supposes the terminal range as 20Km for ballistic missiles, [6] applies 500m in their common curvature guidance paper. In terms of time of the terminal phase rather than distance, it is generally the last 4 to 6 seconds of flight [3].<br>However, in order to enhance the performance, we should consider all the key issues of the handover: target detection and tracking, guidance command saturation during the terminal phase and intercepting target before it strikes its object. Since the key issues are coupled with each other, they<br>must be considered together. For example, the handover and heading errors can be large due to the effect of environmental<br>xplicitly related to the target acquisition and terminal homing capabilities, but also have the property of trade-off: Each of them requires longer range to reduce their errors and increases the error of the other.<br>In this paper, it is assumed that the terminal range for the handover is around 6Km (switch from uplink data to seeker data) to investigate the performance of the proposed cooperative missile guidance scheme. The handover range has been determined according to the seeker performances. However, in order to take into account potential guidance command saturations, terminal homing capabilities (capturability) and to ensure target interception before ground base destruction we propose in the following an original mid course guidance law design plus an orignal target allocation algorithm. The switch from mid course guidance to terminal guidance (in this case DGL/1) is no more synchronized with handover logics but with capturability logics. Therefore, we decoupled the handover logics (uplink to seeker switch) from the guidance law switch. The first logic is based on data accuracy and the second one on attainability capabilities. However, this approach may still not consider some other parameters as missile gimbal angle limitations (to be addressed in future study).
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
当导弹接近并锁定具有挑战性的导弹时,需要从中段制导改为末制导[3]。由于切换点的确定综合考虑了导引头探测距离和扫描角、雷达功率、导弹头部形状和传感器不确定性等因素,因此切换点不存在共同值。虽然[7]假设弹道导弹的终端射程为20公里,[6]在其共同曲率制导文件中采用了500米。从终点阶段的时间而不是距离来看,一般是飞行的最后4到6秒[3]。<br>然而,为了提高切换性能,需要考虑切换过程中的所有关键问题:目标的检测与跟踪、终端阶段的制导指令饱和以及在目标击中目标之前拦截目标。由于关键问题是相互关联的,它们<br>必须一起考虑。例如,由于环境的影响,切换和航向误差可能很大<br>xplicit关系到目标捕获和终端寻的能力,但也具有取舍的性质:每一种都需要更长的射程来减少误差,增加另一种的误差。<br>本文假设切换终端距离在6Km左右(从上行数据切换到导引头数据)来研究所提出的协同导弹制导方案的性能。根据导引头的性能确定了切换范围。然而,为了考虑潜在的制导命令饱和、终端寻的能力(capturability)以及确保在摧毁地面基地之前拦截目标,我们在以下原始的中段制导律设计中提出了一个原始的目标分配算法。从中间制导到终端制导(在本例中为DGL/1)的切换不再与切换逻辑同步,而是与可捕获性逻辑同步。因此,我们将切换逻辑(上行链路到导引头开关)与制导律开关解耦。第一种逻辑基于数据准确性,第二种逻辑基于可获得性能力。然而,这种方法可能仍不考虑其他一些参数作为导弹框架角的限制(在未来的研究中加以解决)。
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: