结合前文的理论,设计了多传感器图优化SLAM系统,包括四个模块,如图43所示。数据采集模块采集传感器数据,进行处理,送到位姿获取模块。IMU的英语翻译

结合前文的理论,设计了多传感器图优化SLAM系统,包括四个模块,如图4

结合前文的理论,设计了多传感器图优化SLAM系统,包括四个模块,如图43所示。数据采集模块采集传感器数据,进行处理,送到位姿获取模块。IMU和编码器进行融合,生成里程计信息,2D激光和RGB-D点云分别进行扫描匹配合成位姿,再通过UKF进行融合,提高定位精度,RGB-D点云同时进行描述子求解,简化点云信息,在后端优化模块,通过回环检测进行优化,恢复机器人实际的运动位姿。地图创建模块根据2D激光点云和RGB-D点云降维生成的2D点云创建栅格地图。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
Combined with the previous theory, a multi-sensor graph optimized SLAM system is designed, including four modules, as shown in Figure 43. The data acquisition module collects sensor data, processes it, and sends it to the pose acquisition module. The IMU and the encoder are fused to generate odometer information. The 2D laser and RGB-D point cloud are scanned and matched to synthesize the pose, and then the UKF is fused to improve the positioning accuracy. The RGB-D point cloud is also used to solve the descriptor and simplify The point cloud information is optimized in the back-end optimization module through loopback detection to restore the actual movement posture of the robot. The map creation module creates a raster map based on the 2D point cloud generated by the 2D laser point cloud and the RGB-D point cloud dimensionality reduction.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
Combined with the previous theory, a multi-sensor diagram is designed to optimize the SLAM system, including four modules, as shown in Figure 43. The data acquisition module collects the sensor data, processes it, and sends it to get the module. IMU and encoder fusion, generate odometer information, 2D laser and RGB-D point cloud are scanned to match the synthetic position, and then through UKF fusion, improve positioning accuracy, RGB-D point cloud at the same time to describe sub-solution, simplify point cloud information, optimize the module in the back end, optimize through loop detection, restore the actual movement position of the robot. The map creation module creates a grid map based on 2D point clouds generated by 2D laser point clouds and RGB-D point cloud downdimension.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
Combined with the theory of the previous paper, a multi-sensor graph optimization slam system is designed, including four modules, as shown in Figure 43. The data acquisition module collects the sensor data, processes it, and sends it to the pose acquisition module. IMU and encoder are fused to generate odometer information. 2D laser and rgb-d point cloud are scanned and matched to synthesize pose respectively. Then, UKF is used to fuse to improve positioning accuracy. Rgb-d point cloud is solved at the same time to simplify point cloud information. In the back-end optimization module, loop detection is used to optimize and recover the actual motion pose of the robot. The map creation module creates raster map based on 2D laser point cloud and rgb-d point cloud.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: