由于加入了深度相机点云数据,submap的信息量变得可观,单个submap的数据量也变得庞大,在回环检测时直接将新观测到的数据与关键帧sub的英语翻译

由于加入了深度相机点云数据,submap的信息量变得可观,单个subm

由于加入了深度相机点云数据,submap的信息量变得可观,单个submap的数据量也变得庞大,在回环检测时直接将新观测到的数据与关键帧submap进行匹配,求解出来十分费时费力。以上基于分支定界算法的回环检测均是在2D的submap上进行求解的。直接丢弃3D点云的数据,单独使用激光点形成的submap的话,回环的正确率无法得到保障,同时也是对数据信息的浪费。因此,对于3D点云采用描述子的形式存储在submap中。描述子不仅大大压缩了原始数据量,同时还保留了足够的环境信息。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
Due to the addition of depth camera point cloud data, the amount of submap information becomes considerable, and the amount of data of a single submap also becomes huge. During the loop detection, the newly observed data is directly matched with the key frame submap, and solving it is very time-consuming and laborious. The above loop detection based on the branch and bound algorithm is solved on the 2D submap. If you directly discard the data of the 3D point cloud and use the submap formed by the laser points alone, the accuracy of the loopback cannot be guaranteed, and it is also a waste of data information. Therefore, the 3D point cloud is stored in the submap in the form of descriptors. The descriptor not only greatly compresses the amount of original data, but also retains sufficient environmental information.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
With the addition of deep camera point cloud data, the amount of information in submap becomes considerable, and the amount of data in a single submap becomes large, and it is time-consuming to match the newly observed data directly with the key frame submap during loopback detection. The loop detection based on the branch ingelimiting algorithm is solved on the submap of 2D. Directly discard the data of the 3D point cloud, use the submap formed by the laser point alone, the correct rate of the loop can not be guaranteed, but also a waste of data information. Therefore, for 3D point clouds are stored in submap in the form of a descriptor. The description sub not only greatly compresses the amount of raw data, but also retains sufficient environmental information.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
Due to the addition of depth camera point cloud data, the amount of information of submap becomes considerable, and the amount of data of a single submap becomes huge. In loop detection, it is time-consuming and laborious to directly match the newly observed data with the key frame submap. The loop detection based on branch and bound algorithm is solved on 2D submap. If the data of 3D point cloud is directly discarded and the submap formed by laser points is used alone, the accuracy of loopback cannot be guaranteed, and it is also a waste of data information. Therefore, 3D point clouds are stored in submap in the form of descriptors. The descriptors not only greatly reduce the amount of original data, but also retain enough environmental information.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: