were assessed by a group of 65 dysmorphologists achieving75% accuracy 的简体中文翻译

were assessed by a group of 65 dysm

were assessed by a group of 65 dysmorphologists achieving
75% accuracy on the same task.
TABLE II
RESULTS ON THE BINARY PROBLEM OF DETECTING CORNELIA DE LANGE
SYNDROME PATIENTS
Method Accuracy
Rohatgi et al. [55] 75%
Basel-Vanagaite et al. [4] 87%
DeepGestalt 96.88%
2) Angelman Syndrome (AS): This binary experiment fo￾cuses on separating Angelman Syndrome (AS) patients from
patients with other syndromes (e.g. Williams, Russell-Silver,
Fragile X, Moebius, DiGeorge, Mowat-Wilson, Aarskog,
Chromosome 1p36 - Microdeletion, Prader-Willi, Kleefs￾tra, Phelan-McDermid, Proteus, Feingold, Coffin-Siris). The
model is trained using 766 AS images as the positive cohort,
and 2699 images as the negative cohort.
In a previous survey done by [56], a group of 20 dysmor￾phologists were asked to examine a set of 25 patient images
and note which patients had AS and which did not. The
test set included 10 patients with AS (positive cohort) and
15 patients with other genetic syndromes (negative cohort).
However, experts were not aware of the number of patients in
each cohort. The recognition rate reported in the survey was
71% accuracy, 60% sensitivity and 78% specificity.
TABLE III
RESULTS ON THE BINARY PROBLEM OF DETECTING ANGELMAN
SYNDROME PATIENTS
Method Accuracy Sensitivity Specificity
Bird et al. [56] 71% 60% 78%
DeepGestalt 92% 80% 100%
DeepGestalt was evaluated on the same test set and achieved
a recognition rate of 92% accuracy, 80% sensitivity and 100%
specificity (Table III), reducing the error rate by more than
72%.
B. Specialized Gestalt Model
In this section, we describe how DeepGestalt may be used
for a small scale problem, using only a small number of images
per cohort. We focus on the problem of distinguishing between
molecular subtypes of a syndrome which is genetically hetero￾geneous and derives from genetic errors in the same signaling
pathway.
We use this experiment as an example of a specialized
Gestalt model, aimed at predicting the right genotype from
patients with very subtle phenotype differences.
In 2010, Allanson et al. published The face of Noonan
syndrome: Does phenotype predict genotype [57]. They ex￾plored whether dysmorphology experts can predict the Noonan
syndrome related genotype using the facial phenotype. They
presented a set of 81 images of Noonan syndrome patients
to two dysmorphologists. The patients’ genotypes have been
KRAS PTPN11 RAF1 SOS1 RIT1
Fig. 3. Composite photos of Noonan syndrome patients with different geno￾types show subtle differences, such as less prominent eye brows in individuals
with a SOS1 mutation, which might reflect the previously recognized sparse
eye brows as an expression of the more notable ectodermal findings associated
with mutations in this gene.
confirmed molecularly as PTPN11, SOS1, RAF1 and KRAS.
The task was to predict the right genotype from a facial image.
Their conclusion was that experts in the field could not succeed
in this task, as written in the article abstract: ”Thus, the facial
phenotype, alone, is insufficient to predict the genotype, but
certain facial features may facilitate an educated guess in some
cases”.
We aim to examine if the technology described in this paper
can perform better and propose a novel way to harness the
Gestalt model technology to solve the problem of predicting
the right genotype.
Fig. 4. Test set confusion matrix for the Specialized Gestalt Model
We collected patient images diagnosed with Noonan syn￾drome and molecularly diagnosed with a mutation in one of
the following genes: PTPN11, SOS1, RAF1, RIT1 and KRAS.
All of the images were annotated by experts, taken either
from published articles or the internal Face2Gene phenotype
database. A set of 25 images, five images per gene (type), are
excluded from training and used as a test set. Those images
were curated from [58], [59], [57], [60], [61], [62]. To illustrate
the general appearance of each cohort, we create composite
photos by averaging the images of each cohort, see Figure 3.
Using the framework described above, we use this specialized dataset along with our internal dataset and train a
full DeepGestalt Model. The specialized Gestalt model is a
truncated version of the full model and predicts only the five
desired classes. The resultant model is then applied to the
test set and achieves a top-1-accuracy of 64%. This is more
than three times better than the random chance of 20%. The
confusion matrix for this test set is presented in Figure 4. A
similar work using our technology with comparable results can
be seen in [63].
Besides the phenotypes that are caused by mutations in
the MAPkinase pathway, DeepGestalt has also been used
to analyze two further molecular pathway diseases that are
known for their high phenotypic similarity. In GPI-anchor
biosynthesis deficiencies, DeepGestalt was able to reproduce
the phenotypic substructure that was already delineated by
expert clinicians and, beyond that, to deduce significant genespecific phenotypes [64]. For five metabo
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
E.评价<br>我们通过测量顶评估模型的表现?K-精度,其中K = 1,5,10。例如,在的情况下,<br>顶部-1-精度,结果表示诊断是否<br>综合征最早在建议排序列表。该顶<br>10准确性是指正确的遗传综合征的<br>建议作为排序列表的前十个综合征之一。<br>为了衡量结果的统计显着性<br>的不平衡的多类问题,我们使用置换<br>通过测量测试设置精度的分布测试<br>的零假设下的统计数据。我们随机置换所述<br>测试的一组标签106周<br>在测试数据的图像的时间,并计算<br>顶部-K-精度对于每个排列。这让<br>我们采样精度分布,并计算其p?值。<br>F.代码的可用性<br>DeepGestalt是Face2Gene发动机在线APPLI?阳离子(www.face2gene.com),这是公开提供给<br>医护人员。<br>G.数据可用性<br>支持这一研究结果的数据被划分<br>为两个组,公布的数据与内部数据。发布<br>的数据可以从报告引用。受限数据<br>从Face2Gene应用策划,并使用<br>许可。这些图像是不公开的。<br>IV。实验和结果<br>A.二进制格式塔模型<br>正如在第二部分,许多研究领域中的描述<br>遗传综合征分类处理二进制的问题,<br>其目的是要正确区分正常个体<br>受影响的人,或者一个特定综合征区分<br>从其他几个综合征混合组。<br>为了在这种类型的二进制的评估DeepGestalt <br>问题,我们训练上仅有的两个同伙模型。第一<br>由患者的照片与单个综合征(正<br>组群)和第二组成病人的照片与几个<br>不同综合征(阴性组)。<br>1)狄兰氏症候群(CDLS):我们培养<br>使用614个CDL的图像作为阳性队列模型,1079<br>其是负队列图像。负队列<br>图像的患者与其他几个综合征(如<br>歌舞伎,Aarskog,Dubowitz,浮码头,胎儿酒精,<br>Kleefstra和鲁宾斯坦-泰比综合征)。<br>以下训练,该模型是在该测试集评价<br>在[4]中描述。该试验组包括32张面部照片,23个<br>CDLS患者的图像和非CDLS患者9倍的图像。<br>DeepGestalt实现了在检测正确的96.88%的准确度<br>的队列。<br>我们我们的结果比较上进行先前研究<br>这些图像(表二)。巴塞尔Vanagaite等。[4]报道的<br>87%的精度在检测患者是否具有<br>CDL的。他们也比较了他们的方法对性能<br>的Rohatgi等人曾进行过研究。[55],其中这些图像
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
E. 评价<br>我们通过测量 TopK 精度(其中 K = 1、5、10)来评估模型的性能。例如,在<br>最高精度,结果表示是否诊断<br>综合征建议在排序列表中第一。顶部<br>10 精度意味着正确的遗传综合征<br>建议作为排序列表中的前十个综合征之一。<br>为了测量我们结果的统计意义<br>对于不平衡的多类问题,我们使用排列<br>通过测量测试集精度的分布进行测试<br>在零假设下的统计信息。我们随机渗透<br>测试集标签 106<br>时间超过测试数据图像,并计算<br>每个排列的顶级 K 精度。这允许<br>我们来采样精度分布并计算其估计值。<br>F. 代码可用性<br>DeepGestalt 是 Face2Gene 在线应用程序 (www.face2gene.com) 的引擎,可公开用于<br>医疗保健专业人员。<br>G. 数据可用性<br>支持本研究结果的数据被划分<br>分为两组,已发布数据和受限数据。发表<br>数据可从报告的引用中获取。受限数据<br>从 Face2Gene 应用程序策划,并被使用<br>根据许可证。这些图像不公开。<br>四. 实验和结果<br>A. 二进制格斯塔特模型<br>如第二节所述,在<br>遗传综合征分类处理二元问题,<br>目标是正确分类未受影响的个人<br>从受影响的,或区分一个特定的综合征<br>来自其他几个综合征的混合组。<br>为了评估这种类型的二进制的DeepGestalt<br>问题,我们只训练两个队列的模型。第一个<br>包括患者的照片与一个单一的综合征(阳性<br>队列)和第二个包括病人的照片与几个<br>不同的综合征(阴性队列)。<br>1) 科妮莉亚·德朗格综合征(CdLS):我们培训<br>模型使用 614 CdLS 图像作为正队列,和 1079<br>图像是负群。负组<br>图像是患有其他几个综合征的患者(例如:<br>歌舞伎,阿尔斯科格,杜博维茨,漂浮港,胎儿酒精,<br>克莱夫斯特拉和鲁宾斯坦-泰比综合征)。<br>培训后,在测试集上评估模型,<br>在 [4] 中描述。此测试集包括 32 张面部照片,23 张<br>CdLS 患者的图像和非 CdLS 患者的 9 个图像。<br>DeepGestalt 在检测正确时达到 96.88% 的准确率<br>队列。<br>我们将我们的结果与之前在<br>这些图像(表二)。巴塞尔-瓦纳盖特等人[4]报告了<br>检测患者是否具有 87% 的准确率<br>CdLS.他们还将其方法的性能与<br>罗哈吉等人以前做过的研究[55],其中这些图像
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
E.评价<br>我们通过测量topk精度来评估模型的性能,其中k=1,5,10。例如,在<br>高精度,结果表示<br>综合征被列为第一位。顶端-<br>10准确度意味着正确的遗传综合征是<br>作为排序表中前十个综合征之一。<br>为了衡量我们结果的统计意义<br>对于一个不平衡的多类问题,我们使用置换<br>通过测量测试集精度分布进行测试<br>零假设下的统计。我们随机排列<br>测试集标签106<br>乘以测试数据图像,并计算<br>每个排列的最高k精度。这允许<br>我们对精度分布进行抽样并计算其p值。<br>F.代码可用性<br>DeepGestalt是Face2Gene在线应用程序(www.face2gene.com)的引擎,该应用程序可公开用于<br>医疗专业人员。<br>G.数据可用性<br>支持这项研究结果的数据是分开的<br>分为发布数据和限制数据两组。出版<br>可从报告的参考文献中获得数据。受限数据<br>从Face2Gene应用程序中固化,并被使用<br>在许可证下。这些图片是不公开的。<br>四、实验及结果<br>A.二元格式塔模型<br>如第二节所述,在<br>遗传综合征分类处理一个二元问题,<br>目标是正确分类未受影响的个体<br>从受影响的人,或区分一种特殊的综合征<br>从其他几个综合征的混合组。<br>为了评估这类二元体的深格式塔<br>问题是,我们只在两个队列上训练模型。第一次<br>包括患者的单一综合征照片(阳性<br>第二组是病人的照片<br>不同综合征(阴性队列)。<br>1)Cornelia de Lange综合征(CDLS):我们训练<br>使用614张cdls图像作为阳性队列的模型,以及1079张<br>阴性组的图像。消极群体<br>图像是一些其他综合征患者的图像(例如<br>歌舞伎,艾尔斯科,杜波维茨,浮港,胎儿酒精,<br>Kleefstra和Rubinstein-Taybi综合征)。<br>在训练之后,模型将在一个测试集上进行评估<br>如[4]所述。这个测试集包括32张面部照片,23张<br>cdls患者和9例非cdls患者的图像。<br>DeepGestalt检测正确率达到96.88%<br>队列。<br>我们将我们的研究结果与之前在<br>这些图像(表二)。Basel Vanagate等人[4]报告<br>87%的准确率检测病人是否<br>CDL公司。他们还将其方法的性能与<br>先前由Rohatgi等人进行的研究。[55],那些图像<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: