石油化工等行业是VOCs和CO2主要产排源,“碳中和”压力巨大。光催化既能将VOCs降解为CO2和H2O,又能将CO2或VOCs降解物转化为的简体中文翻译

石油化工等行业是VOCs和CO2主要产排源,“碳中和”压力巨大。光催化

石油化工等行业是VOCs和CO2主要产排源,“碳中和”压力巨大。光催化既能将VOCs降解为CO2和H2O,又能将CO2或VOCs降解物转化为CO和CH4等气体燃料,有望实现碳循环。本项目采用催化效率更高的光电催化方式,以金属纳米颗粒修饰的TiO2纳米管作为光电催化材料,以固态电解质抑制析氢反应,以苯系物BTEX模拟工业VOCs,并构建一个集多种气体组分于一体、空穴受体与电子受体共存、可以实现碳循环的具有“BTEX(g)-CO2光电催化反应耦合效应”的气-固界面反应体系,解决传统液-固界面光催化存在的CO2需经溶液吸收、产物不易检测、析氢严重、催化效率低等问题。通过纳米管微环境表征、气源及光电催化条件调控、气相色谱及电化学检测、动力学模型分析及DFT模拟计算,研究并阐明BTEX(g)-CO2在气-固界面中的光电催化反应耦合机理、光电催化动力学理论及碳循环过程可控性等关键问题,为温室气体转化气体燃料并同步降解挥发性有机污染物提供理论依据,丰富和发展碳循环与碳中和理论,并为其它气-固界面催化研究提供借鉴。
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
石油化工等行业是VOCs和CO2主要产排源,“碳中和”压力巨大。光催化既能将VOCs降解为CO2和H2O,又能将CO2或VOCs降解物转化为CO和CH4等气体燃料,有望实现碳循环。本项目采用催化效率更高的光电催化方式,以金属纳米颗粒修饰的TiO2纳米管作为光电催化材料,以固态电解质抑制析氢反应,以苯系物BTEX模拟工业VOCs,并构建一个集多种气体组分于一体、空穴受体与电子受体共存、可以实现碳循环的具有“BTEX(g)-CO2光电催化反应耦合效应”的气-固界面反应体系,解决传统液-固界面光催化存在的CO2需经溶液吸收、产物不易检测、析氢严重、催化效率低等问题。通过纳米管微环境表征、气源及光电催化条件调控、气相色谱及电化学检测、动力学模型分析及DFT模拟计算,研究并阐明BTEX(g)-CO2在气-固界面中的光电催化反应耦合机理、光电催化动力学理论及碳循环过程可控性等关键问题,为温室气体转化气体燃料并同步降解挥发性有机污染物提供理论依据,丰富和发展碳循环与碳中和理论,并为其它气-固界面催化研究提供借鉴。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
Petrochemical and other industries are the main production and emission sources of VOCs and CO2, and the pressure of "carbon neutralization" is huge. Photocatalysis can not only degrade VOCs into CO2 and H2O, but also convert CO2 or VOCs degradation products into gaseous fuels such as CO and CH4, which is expected to realize carbon cycle. In this project, the photocatalysis method with higher catalytic efficiency is adopted, the TiO2 nanotube modified by metal nanoparticles is used as the photocatalysis material, the hydrogen evolution reaction is inhibited by solid electrolyte, the benzene series BTEX is used to simulate industrial VOCs, and a system integrating multiple gas components, the coexistence of hole receptor and electron receptor is constructed The gas-solid interface reaction system with "BTEX (g) - CO2 photocatalytic reaction coupling effect" that can realize carbon cycle solves the problems existing in the traditional liquid-solid interface photocatalysis, such as CO2 needs to be absorbed by solution, products are not easy to detect, serious hydrogen evolution and low catalytic efficiency. Through the characterization of nanotube microenvironment, the regulation of gas source and photocatalytic conditions, gas chromatography and electrochemical detection, kinetic model analysis and DFT simulation calculation, the key problems such as the coupling mechanism of BTEX (g) - CO2 photocatalytic reaction in the gas-solid interface, the theory of photocatalytic kinetics and the controllability of carbon cycle process are studied and clarified, It provides a theoretical basis for the conversion of greenhouse gases into gaseous fuels and the simultaneous degradation of volatile organic pollutants, enriches and develops the theory of carbon cycle and carbon neutralization, and provides a reference for other research on gas-solid interface catalysis.
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
Chemicals and other industries are the main sources of VOCs and CO2, and the pressure of "carbon neutralization" is huge. Photocatalysis can not only degrade VOCs into CO2 and H2O, but also convert CO2 or VOCs degradation products into gaseous fuels such as CO and CH4, which is expected to realize carbon cycle. In this project, the photoelectrocatalysis method with higher catalytic efficiency is adopted, TiO2 nanotubes modified by metal nanoparticles are used as photoelectrocatalysis materials, solid electrolyte is used to inhibit hydrogen evolution reaction, BTEX is used to simulate industrial VOCs, and a gas-solid interface reaction system with BTEX(g)-CO2 photoelectrocatalysis reaction coupling effect which integrates various gas components and can realize carbon cycle is constructed, thus solving the traditional liquid-solid interface photocatalysis. Through the characterization of nanotube microenvironment, the regulation of gas source and photoelectrocatalysis conditions, gas chromatography and electrochemical detection, kinetic model analysis and DFT simulation calculation, the key issues of BTEX(g)-CO2 photoelectrocatalysis reaction coupling mechanism, photoelectrocatalysis kinetic theory and controllability of carbon cycle process at the gas-solid interface were studied and clarified, which provided theoretical basis for greenhouse gas to convert gas fuel and synchronously degrade volatile organic pollutants, enriched and developed the theory of carbon cycle and carbon neutralization, and provided other gas-solid interface catalysis research.
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: