在多层前馈神经网络中,前一层的输出信号作为后一层的输入信号,依此类推,输入信号由输入层进入人工神经网络,经过隐藏层以及输出层的函数处理,最后的英语翻译

在多层前馈神经网络中,前一层的输出信号作为后一层的输入信号,依此类推,

在多层前馈神经网络中,前一层的输出信号作为后一层的输入信号,依此类推,输入信号由输入层进入人工神经网络,经过隐藏层以及输出层的函数处理,最后得到整个人工神经网络的输出信号。一般而言,增加隐藏层可以使得神经网络得到更高效的统计,特别是对于输入数据量比较大的情况,隐藏层数目的增加可以使得神经网络对数据的分析和拟合变得更加精确。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
In a multi-layer feedforward neural network, the output signal of the previous layer is used as the input signal of the next layer, and so on, the input signal enters the artificial neural network from the input layer, and is processed by the hidden layer and the function of the output layer, and finally the entire The output signal of the artificial neural network. Generally speaking, adding hidden layers can make the neural network get more efficient statistics, especially for the case of a relatively large amount of input data, the increase in the number of hidden layers can make the neural network's analysis and fitting of the data more accurate.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
In a multi-layer feed-forward neural network, the output signal of the former layer acts as the input signal of the latter layer, and so on, the input signal enters the artificial neural network by the input layer, is processed by the function of the hidden layer and the output layer, and finally gets the output signal of the whole artificial neural network. In general, increasing the hidden layer can make the neural network more efficient statistics, especially for the large amount of input data, the increase in the number of hidden layers can make the neural network data analysis and fitting more accurate.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
In the multilayer feedforward neural network, the output signal of the former layer is used as the input signal of the latter layer, and so on, the input signal enters the artificial neural network from the input layer, and finally gets the output signal of the whole artificial neural network through the function processing of the hidden layer and the output layer. Generally speaking, adding hidden layer can make neural network get more efficient statistics, especially for the case of large amount of input data, increasing the number of hidden layer can make neural network analysis and fitting of data more accurate.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: