采用ARIMA模型与SARIMA模型对顶板一个断裂周期的液压支架载荷进行预测,虽然两种模型均获取了液压支架的循环周期变化特征,但对液压支架载的英语翻译

采用ARIMA模型与SARIMA模型对顶板一个断裂周期的液压支架载荷进

采用ARIMA模型与SARIMA模型对顶板一个断裂周期的液压支架载荷进行预测,虽然两种模型均获取了液压支架的循环周期变化特征,但对液压支架载荷的峰值及变化规律的预测效果均较差,采用均方根误差(RMSE)对两种模型的拟合效果进行对比计算,ARIMA模型的RMSE值为5.62,SARIMA模型的RMSE值为5.18,两种模型均未能实现对顶板一个断裂周期的液压支架载荷进行较好的预测。笔者同样采用LSTM算法、RNN算法等对数据进行建模分析,但对一个顶板断裂周期的液压支架载荷预测效果均不理想。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
The ARIMA model and the SARIMA model are used to predict the load of the hydraulic support during one fracture cycle of the roof. Although both models have obtained the cycle characteristics of the hydraulic support, the prediction effect of the peak load and the change law of the hydraulic support is poor. The root mean square error (RMSE) was used to compare the fitting effects of the two models. The RMSE value of the ARIMA model was 5.62, and the RMSE value of the SARIMA model was 5.18. Both models failed to achieve hydraulic pressure for one fracture cycle of the roof. Support load is better predicted. The author also uses LSTM algorithm, RNN algorithm, etc. to model and analyze the data, but the effect of predicting the load of the hydraulic support for a roof fracture cycle is not ideal.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
The ARIMA model and the SARIMA model were used to predict the hydraulic support load of a break cycle on the top plate, although both models obtained the cycle cycle change characteristics of the hydraulic support, but the prediction effect of the peak and variation law of the hydraulic support load was poor, and the fitting effect of the two models was compared with the RMSE. The RMSE value of the ARIMA model is 5.62 and the RMSE value of the SARIMA model is 5.18. The author also uses LSTM algorithm, RNN algorithm and so on to model and analyze the data, but the hydraulic support load prediction effect of a top plate break cycle is not ideal.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
ARIMA model and SARIMA model are used to predict the load of hydraulic support in a fracture period. Although both models obtain the cyclic variation characteristics of hydraulic support, the prediction effect of peak value and variation law of hydraulic support load is poor. Root mean square error (RMSE) is used to compare the fitting effect of the two models. The RMSE value of ARIMA model is 5.62 The RMSE value of SARIMA model is 5.18. Neither of the two models can predict the load of hydraulic support in one fracture cycle of roof. The author also uses LSTM algorithm and RNN algorithm to model and analyze the data, but the prediction effect of hydraulic support load for a roof fracture period is not ideal.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: