5. Cleaning and maintenance of activated carbonWe report here the activated carbon and cobalt hexacyanoferrate composite, which is applied as the electrode materials in symmetric supercapacitors containing a 1.0 M Na 2 SO 4 aqueous electrolyte. This novel material combines high specific surface area and electrochemical stability of activated carbon with the redox properties of cobalt hexacyanoferrate, resulting in maximum specific capacitance of 329 F g −1 with large voltage working window of 2.0 V. Electrochemical studies indicated that cobalt hexacyanoferrate introduces important pseudocapacitive properties accounting for the overall charge-storage process, especially when I < 0.5 A g −1 . At lower gravimetric currents (e.g., 0.05 A g −1 ) and up to 1.0 V, the presence of cobalt hexacyanoferrate improves the specific energy for more than 300%. In addition, to better understanding the energy storage process we also provided a careful investigation of the electrode materials under dynamic polarization conditions using the in situ Raman spectroscopy and synchrotron light X-ray diffraction techniques. Interesting complementary findings were obtained in these studies. We believe that this novel electrode material is promising for applications regarding the energy-storage process in pseudocapacitors with long lifespan properties.