IONs can accumulate in tumor sites by passive or active targeting. Pas的简体中文翻译

IONs can accumulate in tumor sites

IONs can accumulate in tumor sites by passive or active targeting. Passive targeting occurs when nanoparticles can extravasate from the bloodstream and enter in tumor cells through the enhanced permeability and retention (EPR) effect [134,135]. On the other hand, active targeting with an applied magnetic field takes advantage on the responsiveness of magnetic nanoparticles towards a magnetic field [136,137]. IONs can also be coated with synthetic and natural polymers [130,138,139], surfactants and fatty acids [31,140] and functionalized with targeting ligands [130,141], which allows the use of these nanoparticles as drug delivery systems with improved selectivity and pharmacokinetics [142,143].The superparamagnetic properties demand that nanoparticles have small sizes, preferably below ~20 nm [4]. However, at this size, magnetic moments of nanoparticles are small, so magnetic response can be compromised. Self-assembly of individual nanoparticles into nanoclusters is one possible strategy to overcome this problem. Kralj et al. [144] developed nanochains and nanobundles from nanoclusters of maghemite (γ-Fe2O3) with preserved superparamagnetism, zero coercivity and good colloidal stability. Other elongated structures, like nanotubes or nanorods, are also being investigated for drug delivery. Iron oxide nanorods have attracted attention due to their superparamagnetic behavior [145] and capacity of intracellular delivery with controlled-release profile and biocompatibility [146]. Nanotubes have the advantage of enabling the loading of large amounts of bioactive compounds in their inner voids, while the outer surface can be coated or functionalized with targeting ligands (Figure 6A,B) [147].
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
离子可以通过被动或主动靶向在肿瘤部位积累。当纳米颗粒可以从血流中渗出并通过增强的渗透性和保留 (EPR) 效应进入肿瘤细胞时,就会发生被动靶向 [134,135]。另一方面,外加磁场的主动靶向利用磁性纳米粒子对磁场的响应性 [136,137]。离子还可以用合成和天然聚合物 [130,138,139]、表面活性剂和脂肪酸 [31,140] 包被,并用靶向配体进行功能化 [130,141],这允许将这些纳米颗粒用作具有改进选择性和药代动力学的药物递送系统 [142,143]。<br><br>超顺磁特性要求纳米颗粒具有小尺寸,最好低于~20 nm [4]。然而,在这个尺寸下,纳米颗粒的磁矩很小,因此磁响应可能会受到影响。将单个纳米粒子自组装成纳米团簇是克服这个问题的一种可能策略。克拉利等人。[144] 从磁赤铁矿 (γ-Fe2O3) 的纳米团簇中开发出纳米链和纳米束,具有保留的超顺磁性、零矫顽力和良好的胶体稳定性。其他细长结构,如纳米管或纳米棒,也正在研究用于药物递送。氧化铁纳米棒由于其超顺磁性行为 [145] 和具有控释特性和生物相容性的细胞内递送能力而受到关注 [146]。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
IONs can accumulate in tumor sites by passive or active targeting. Passive targeting occurs when nanoparticles can extravasate from the bloodstream and enter in tumor cells through the enhanced permeability and retention (EPR) effect [134,135]. On the other hand, active targeting with an applied magnetic field takes advantage on the responsiveness of magnetic nanoparticles towards a magnetic field [136,137]. IONs can also be coated with synthetic and natural polymers [130,138,139], surfactants and fatty acids [31,140] and functionalized with targeting ligands [130,141], which allows the use of these nanoparticles as drug delivery systems with improved selectivity and pharmacokinetics [142,143].The superparamagnetic properties demand that nanoparticles have small sizes, preferably below ~20 nm [4]. However, at this size, magnetic moments of nanoparticles are small, so magnetic response can be compromised. Self-assembly of individual nanoparticles into nanoclusters is one possible strategy to overcome this problem. Kralj et al. [144] developed nanochains and nanobundles from nanoclusters of maghemite (γ-Fe2O3) with preserved superparamagnetism, zero coercivity and good colloidal stability. Other elongated structures, like nanotubes or nanorods, are also being investigated for drug delivery. Iron oxide nanorods have attracted attention due to their superparamagnetic behavior [145] and capacity of intracellular delivery with controlled-release profile and biocompatibility [146]. Nanotubes have the advantage of enabling the loading of large amounts of bioactive compounds in their inner voids, while the outer surface can be coated or functionalized with targeting ligands (Figure 6A,B) [147].<br>
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
离子可以通过被动或主动靶向在肿瘤部位积累。当纳米粒子可以从血流中溢出并通过增强的渗透性和保留(EPR)效应进入肿瘤细胞时,就会发生被动靶向[134,135]。另一方面,施加磁场的主动靶向利用磁性纳米粒子对磁场的响应性[136,137]。离子也可以用合成和天然聚合物[130,138,139]、表面活性剂和脂肪酸[31,140]进行包覆,并用靶向配体[130,141]进行功能化,这使得这些纳米粒子可以用作具有改善的选择性和药代动力学的药物递送系统[142,143]。超顺磁性要求纳米粒子具有小尺寸,优选小于20纳米[4]。然而,在这个尺寸下,纳米粒子的磁矩很小,因此磁响应可能会受到影响。单个纳米粒子自组装成纳米团簇是克服这个问题的一种可能策略。Kralj等人[144]从磁赤铁矿(γ-Fe2O3)的纳米团簇中开发了纳米链和纳米束,具有保持的超顺磁性、零矫顽力和良好的胶体稳定性。其他细长结构,如纳米管或纳米棒,也正在研究用于药物输送。氧化铁纳米棒由于其超顺磁性[145]和具有控制释放特性和生物相容性的细胞内递送能力[146]而引起了人们的关注。纳米管的优点是能够在其内部空隙中装载大量生物活性化合物,而外表面可以用靶向配体涂覆或功能化(图6A,B) [147]。
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: