Meyers et al. [18] proposed a more detailed one-dimensional model in 2的简体中文翻译

Meyers et al. [18] proposed a more

Meyers et al. [18] proposed a more detailed one-dimensional model in 2006 to describe the generation of high cathode potential, as well as further performance degradation due to the uneven gas distribution within the fuel cell. This transient model takes into account the gas transmission along the thickness direction in the membrane electrode, as well as the gas concentration differences along the channel. Tang et al. [19] pointed out that after the fuel cell shuts down, the residual air and hydrogen would lead to an OCV of about 1.0 V. Thepresence hydrogen–oxygen interface divides the fuel cell cathode and anode into four regions, as shown in Fig. 5 [10]. Since regions B and C are connected to A through the proton exchange membrane, the potentials in regions A–C are all close to the open circuit voltage (about 1.0 V). Because the cathode potential is 1.0 V higher than the anode, thepotential in region D is up to 2.0 V. Owenjan et al. [20] showed how cathode carbon corrosion develops during start-up/shutdown, and proposed a reverse current model in 2007 to explain the formation of high cathode potential from the aspect of proton and electron movements. As shown in Fig. 6, they argued that the formation of the hydrogen-air interface causes the potential to decrease in the air-covered anode region, the protons move from the cathode to the anode in the opposite direction of the normal movement, forming an air-air cell in the air-filled portion. In order to sustain the oxygen reduction reaction (ORR) at the anode side of the air-air cell, the cathode potential increases until carbon oxidation occurs, supplying protons needed in the anode for ORR.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
Meyers等。[18]在2006年提出了一个更详细的一维模型来描述高阴极电势的产生,以及由于燃料电池内气体分布不均匀而导致的进一步性能下降。该瞬态模型考虑了沿膜电极中沿厚度方向的气体传输以及沿通道的气体浓度差异。Tang等。[19]指出燃料电池关闭后,残留的空气和氢气将导致OCV约为1.0V。<br>氢-氧界面的存在将燃料电池的阴极和阳极分为四个区域,如图5所示[10]。由于区域B和C通过质子交换膜连接到A,因此区域A–C中的电势都接近开路电压(约1.0 V)。由于阴极电位比阳极高1.0 V,因此<br>D区的电势最高为2.0V。Owenjan等。[20]展示了阴极碳腐蚀在启动/关闭过程中如何发展,并在2007年提出了反向电流模型,以从质子和电子运动的角度解释高阴极电势的形成。如图6所示,他们认为氢-空气界面的形成会导致在空气覆盖的阳极区域内电势降低,质子沿正常运动的相反方向从阴极移动到阳极,从而形成空气填充部分中的空气气囊。为了在空气-空气电池的阳极侧维持氧还原反应(ORR),阴极电势增加直到发生碳氧化,从而为阳极提供ORR所需的质子。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
Meyers等人[18]在2006年提出了一个更详细的一维模型,以描述高阴极电位的产生,以及由于燃料电池内部气体分布不均而进一步的性能下降。此瞬态模型考虑沿膜电极的厚度方向的气体传输,以及沿通道的气体浓度差异。Tang等人[19]指出,燃料电池关闭后,残余的空气和氢气会导致约1.0V的OCV。的<br>存在氢氧接口将燃料电池阴极和阳极划分为四个区域,如图5[10]所示。由于区域 B 和 C 通过质子交换膜连接到 A,因此 A+C 区域中的电位都接近开路电压(约 1.0 V)。由于阴极电位比阳极高 1.0 V,<br>区域D的电位高达2.0 V.Owenjan等人[20]展示了阴极碳腐蚀在启动/关闭过程中是如何形成的,并在2007年提出了一个反向电流模型,从质子和电子运动方面来解释高阴极电位的形成。如图6所示,他们争辩说,氢空气接口的形成导致空气覆盖的阳极区域电位降低,质子从阴极向阳极移动,方向与正常运动相反,在充满空气的部分形成空气-空气单元。为了维持空气-空气单元阳极侧的减氧反应(ORR),阴极电位增加,直到发生碳氧化,为 ORR 提供阳极所需的质子。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
Meyers et al. [18] proposed a more detailed one-dimensional model in 2006 to describe the generation of high cathode potential, as well as further performance degradation due to the uneven gas distribution within the fuel cell. This transient model takes into account the gas transmission along the thickness direction in the membrane electrode, as well as the gas concentration differences along the channel. Tang et al. [19] pointed out that after the fuel cell shuts down, the residual air and hydrogen would lead to an OCV of about 1.0 V. Thepresence hydrogen–oxygen interface divides the fuel cell cathode and anode into four regions, as shown in Fig. 5 [10]. Since regions B and C are connected to A through the proton exchange membrane, the potentials in regions A–C are all close to the open circuit voltage (about 1.0 V). Because the cathode potential is 1.0 V higher than the anode, thepotential in region D is up to 2.0 V. Owenjan et al. [20] showed how cathode carbon corrosion develops during start-up/shutdown, and proposed a reverse current model in 2007 to explain the formation of high cathode potential from the aspect of proton and electron movements. As shown in Fig. 6, they argued that the formation of the hydrogen-air interface causes the potential to decrease in the air-covered anode region, the protons move from the cathode to the anode in the opposite direction of the normal movement, forming an air-air cell in the air-filled portion. In order to sustain the oxygen reduction reaction (ORR) at the anode side of the air-air cell, the cathode potential increases until carbon oxidation occurs, supplying protons needed in the anode for ORR.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: