We aim to understand how the spectrum of semi-Dirac fermions is renorm的简体中文翻译

We aim to understand how the spectr

We aim to understand how the spectrum of semi-Dirac fermions is renormalized due to long-range Coulomb electron-electron interactions at a topological Lifshitz transition where two Dirac cones merge. At the transition, the electronic spectrum is characterized by massive quadratic dispersion in one direction, whereas it remains linear in the other. We have found that, to lowest order, the unconventional log2 (double logarithmic) correction to the quasiparticle mass in bare perturbation theory leads to resummation into strong mass renormalization in the exact full solution of the perturbative renormalization-group equations. This behavior effectively wipes out the curvature of the dispersion and leads to Dirac cone restoration at low energy: The system flows towards Dirac dispersion which is anisotropic but linear in momentum with interaction-depended logarithmic modulation. The Berry phase associated with the restored critical Dirac spectrum is zero—a property guaranteed by time-reversal symmetry and unchanged by renormalization. Our results are in contrast with the behavior that has been found within the large-N approach.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
我们旨在了解半狄拉克费米子的光谱如何在两个狄拉克锥合并的拓扑Lifshitz跃迁中由于长距离库伦电子相互作用而重新规范化。在过渡时,电子频谱的特征是在一个方向上有大量二次方色散,而在另一个方向上则保持线性。我们发现,在最低扰动下,裸扰动理论中对准粒子质量的非常规log2(双对数)校正导致在扰动重正化组方程的完全解中恢复为强质量重正化。这种行为有效地消除了色散的曲率,并导致低能量的狄拉克锥恢复:该系统流向Dirac色散,该色散是各向异性的,但动量呈线性,具有依赖于相互作用的对数调制。与恢复的临界Dirac光谱相关的Berry相位为零,这一特性由时间反转对称性保证,而通过归一化不变。我们的结果与在大N方法中发现的行为形成对比。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
我们的目标是了解半狄克铁杉的光谱是如何重新规范化的,因为远程库仑电子-电子相互作用在拓扑Lifshitz过渡,其中两个狄拉克锥体合并。在过渡时,电子光谱的特点是一个方向上具有巨大的二次分散,而另一个方向则保持线性。我们发现,以最低顺序,在裸扰动理论中对准粒子质量的非常规对数2(双对数)修正,导致在扰动重新正数组方程的精确完整解中恢复为强质量重新规范化。此行为有效地消灭了分散的曲率,并导致低能量的 Dirac 锥体恢复:系统流向 Dirac 分散,这是各向异性,但具有线性动量,具有相互作用依赖对数调制。与恢复的关键 Dirac 频谱关联的 Berry 相为零,这是由时间反转对称性保证的属性,并且通过重新规范化保持不变。我们的结果与大 N 方法中的行为形成对比。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
We aim to understand how the spectrum of semi-Dirac fermions is renormalized due to long-range Coulomb electron-electron interactions at a topological Lifshitz transition where two Dirac cones merge. At the transition, the electronic spectrum is characterized by massive quadratic dispersion in one direction, whereas it remains linear in the other. We have found that, to lowest order, the unconventional log2 (double logarithmic) correction to the quasiparticle mass in bare perturbation theory leads to resummation into strong mass renormalization in the exact full solution of the perturbative renormalization-group equations. This behavior effectively wipes out the curvature of the dispersion and leads to Dirac cone restoration at low energy: The system flows towards Dirac dispersion which is anisotropic but linear in momentum with interaction-depended logarithmic modulation. The Berry phase associated with the restored critical Dirac spectrum is zero—a property guaranteed by time-reversal symmetry and unchanged by renormalization. Our results are in contrast with the behavior that has been found within the large-N approach.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: