F检验判断是混合(mixed effect)效应还是固定效应(即是否存在βi0),原假设就是不存在固定效应13随机效应回归每个个体都有一个不的英语翻译

F检验判断是混合(mixed effect)效应还是固定效应(即是否存

F检验判断是混合(mixed effect)效应还是固定效应(即是否存在βi0),原假设就是不存在固定效应13随机效应回归每个个体都有一个不同的随机误差项,与t无关,与个体有关 (虽与个体有关,但是是随机的,而固定效应的截距项也与个体有关,但是固定的)解决办法:平均数最小二乘估计,即将不同个体求平均,那么平均随机误差项对不同时间点无差别了,所以就相当于为常数。豪斯曼检验固定效应还是随机效应14 异质性(heteroskedastic):个体异质性:横截面数据有不同的特征固定效应是否要做异方差检验?为什么?如果做了有怎么办?
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
The F test determines whether it is a mixed effect or a fixed effect (that is, whether there is βi0). The original hypothesis is that there is no fixed effect. <br>13 Random effect regression. <br>Each individual has a different random error term, which is not related to t, and is related to the individual. (Although it is related to the individual, but it is random, and the intercept term of the fixed effect is also related to the individual, but it is fixed) <br>Solution: the least squares estimate of the average, that is, to average different individuals, then the average random error term is different There is no difference in time, so it is equivalent to a constant. <br>Hausman test for fixed effects or random effects <br>14 Heterogeneity (heteroskedastic): individual heterogeneity: cross-sectional data have different characteristics. <br>Should fixed effects be tested for heteroscedasticity? why? What if I do?
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
The F-test determines whether the mixed effect or fixed effect (i.e. the presence of beta i0) and the assumption is that there is no fixed effect<br>13 Random Effect Regression<br>Each individual has a different random error term, not related to t, not related to the individual (although related to the individual, but random, and the fixed effect of the intercept term is also related to the individual, but fixed)<br>Solution: Average least-by-second estimate, which averages different individuals, then the average random error term is no different to the different points in time, so it is equivalent to a constant.<br>Haussmann tests whether fixed or random effects<br>14 Heteroskedastic: Individual Heterogenectivity: Cross-sectional data have different characteristics<br>Does the fixed effect have to be tested for heterovariance? Why? What if i do it?
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
F test is used to determine whether the mixed effect or the fixed effect exists (i.e. whether there is β I0). The original hypothesis is that there is no fixed effect<br>13 random effect regression<br>Each individual has a different random error term, which is independent of t but related to the individual (although it is related to the individual, it is random, and the intercept term of fixed effect is also related to the individual, but fixed)<br>Solution: mean least square estimation, that is to say, different individuals are averaged, so the average random error terms are not different for different time points, so they are equivalent to constants.<br>Hausmann test fixed effect or random effect<br>Heterogeneity: individual heterogeneity: cross sectional data have different characteristics<br>Is heteroscedasticity test necessary for fixed effects? Why? What if you do?<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: