Besides the positive cost-efficiency of CSP, there are still open challenges regarding the implementation of the process at the industrial scale. First of all, (almost) only elementary geometrical shapes like discs have been produced. Up to date, just in few works researchers tried to move toward a rectangular shape [56,57] or multi-layered structures [58,59]. Fabrication of simple shapes is actually a common feature in dry/semi-dry compaction processes [4,60,61]. Since the applied pressure is not uniformly distributed due to the friction between powders and die walls, the formation of pressure gradients, and consequently density gradients, is almost unavoidable [4,60]. Another limitation to be considered in large parts production regards the geometrical aspect: thickness should never be greater than twice the diameter [4] in order to have a uniform pressure distribution and to avoid lamination and end-cap defects [60,4]. Size scaling-up showed difficulties in guaranteeing a homogeneous microstructure due to uneven evaporation of the solvent from one region to another, this causing density gradients and different grain growth rates [56]. The production of larger components by cold sintering could face technological limitations due to the applied pressure levels: hundreds of MPa require mechanical machines able to apply hundreds of tons [8]. Just to have an idea, a force of 13 kN is applied to produce a disc with Φ = 13 mm pressed at 100 MPa but to apply the same pressure to a squared specimen of L = 50 mm, a 250 kN force should be provided, which is about 20 times higher. In this sense, Bang et al. [56] tried to reduce the applied pressure down to 27−45MPa for ZnO and ZnO-based composites, when usually CSP of ZnO is carried out under 100−350MPa [19,[62], [63], [64],13,[65], [66], [67]], and they succeed in producing specimens with >88 % relative density.
除了 CSP 的积极成本效益外,在工业规模实施该过程仍然存在挑战。首先,(几乎)只生产了像圆盘这样的基本几何形状。迄今为止,研究人员仅在少数作品中尝试向矩形 [56,57] 或多层结构 [58,59] 发展。简单形状的制造实际上是干/半干压实过程中的一个共同特征[4,60,61]。由于粉末和模具壁之间的摩擦,施加的压力分布不均匀,因此压力梯度的形成以及密度梯度的形成几乎是不可避免的 [4,60]。在大型零件生产中要考虑的另一个限制与几何方面有关:厚度不应大于直径的两倍 [4],以获得均匀的压力分布并避免层压和端盖缺陷 [60,4]。由于溶剂从一个区域到另一个区域的不均匀蒸发,尺寸放大显示难以保证均匀的微观结构,这导致密度梯度和不同的晶粒生长速率 [56]。由于施加的压力水平,通过冷烧结生产更大的部件可能面临技术限制:数百兆帕需要能够承受数百吨的机械设备 [8]。只是为了有个想法,施加 13 kN 的力以产生 Φ = 13 mm 的圆盘,以 100 MPa 加压,但要对 L = 50 mm 的方形试样施加相同的压力,应提供 250 kN 的力,大约高出 20 倍。在这个意义上,Bang 等人。
正在翻译中..
除了CSP的正成本效率外,在工业规模上实施该工艺仍存在挑战。首先,(几乎)只有像圆盘这样的基本几何形状被制造出来。到目前为止,只有少数研究人员试图朝着矩形[56,57]或多层结构[58,59]方向发展。简单形状的制造实际上是干/半干压实工艺中的一个常见特征[4,60,61]。由于粉末和模具壁之间的摩擦,施加的压力分布不均匀,因此压力梯度和密度梯度的形成几乎是不可避免的[4,60]。在大型零件生产中要考虑的另一个限制是几何方面:厚度不得大于直径的两倍[4],以获得均匀的压力分布,并避免层压和端盖缺陷[60,4]。尺寸放大表明,由于溶剂从一个区域到另一个区域的不均匀蒸发,难以保证均匀的微观结构,这导致密度梯度和不同的晶粒生长速率[56]。由于施加的压力水平,通过冷烧结生产较大部件可能面临技术限制:数百MPa的压力需要能够施加数百吨的机械设备[8]。有一个想法,施加13 kN的力以产生Φ=13 mm的圆盘,并在100 MPa压力下进行压制,但要对L=50 mm的方形试样施加相同的压力,则应提供250 kN的力,该力大约高出20倍。从这个意义上说,Bang等人[56]试图将施加的压力降低到27−对于ZnO和ZnO基复合材料,通常在100℃下进行ZnO CSP时,压力为45MPa−350MPa[19、[62]、[63]、[64]、13、[65]、[66]、[67]],并且他们成功地制作出相对密度>88%的试样。
正在翻译中..