XPS and Raman spectroscopy were performed to evaluate the quality of t的简体中文翻译

XPS and Raman spectroscopy were per

XPS and Raman spectroscopy were performed to evaluate the quality of the graphene powders, as shown in Fig. 2. The C1s/O1s values of G-A and G-B are 27.6 and 34.1, respectively, much higher than that of GO [46], indicating a relatively low degree of oxidation. As shown in the Fig. 2a and b, the XPS spectra of G-A and G-B, along with the peak of sp2 carbon that can be fitted with reference spectrum, the peaks attributed to the Csingle bondOH bond and Csingle bondOsingle bondC bond are also observed [47]. Similar conclusions can be obtained by Raman spectroscopy (Fig. 2c), where the raw graphite powders possess a typical spectrum reported by others [30], [48], [49] with the ID/IG ratio of ~0.06. The shoulder peak in 2D-band of graphite is not found at the G-A and G-B [50], [51], and the shape of 2D-band of G-A and G-B is quite similar to that of graphene ink reported by references [22], [26], indicating that the exfoliation degree of two kinds of graphene powders is high. The exfoliation also causes a little increase of ID/IG to 0.17 and 0.09 for G-A and G-B, respectively, but broadened G and D′ peak merging into one wide bond due to a large amount of defects presenting in the basal plane of graphene [52], [53] is not found. So the increasing ID/IG can be attributed to the graphene flake edges [22], to which the oxygen-containing functional groups are mainly attached [54]. From the results of XPS and Roman, it can be conclude that G-A and G-B possess few defects that will degrade the electrical conductivity of graphene flakes, and the higher oxygen content and ID/IG could be attribute to its smaller mean area and accompanying more flake edges which has already been certified by AFM results.Download : Download high-res image (299KB)Download : Download full-size imageFig. 2. (a), (b) C1s X-ray photoelectron spectra of G-A and G-B. (c) Raman spectra (514 nm) of graphite, G-A and G-B.3.2 The rheological properties of graphene/carbon black inksScreen printing conductive inks with suitable rheological properties are able to possess excellent printable properties, which can be transferred into thinner lines with smoother edges and be beneficial to eliminate defects and bubbles in the printed patterns making them possess higher electrical conductivity. Therefore, how the carbon black content and the properties of graphene powders influenced the rheological behavior of graphene/carbon black inks were investigated using a plate-plate rheometer. The viscosity at different shear rates from the steady-state flow step test was measured, as shown in Fig. 3a. It can be seen that the viscosity of inks declines as the shear rate increases, which is a typical performance of pseudoplastic fluid. Also, conductive carbon blacks with high electrical conductivity usually possess higher surface area and structures, and contain a significant volume of micropores [55], all of these will raise the difficulty of conductive fillers dispersion. Therefore, the conductive inks with higher carbon black content exhibit higher viscosity at the same shear rate before obvious sample spill which occurs about 1 s−1 for G-A-ink-15. The higher the shear rate the faster the paste is ejected, so the ink viscosity with carbon black is lower than that of G-A-ink-0 when shear rate exceeded a certain value, e.g. 26.2 s−1 for G-A-ink-15. Despite the same content of carbon black contained in conductive fillers, the ink viscosity of G-B-ink-15 is higher than that of G-A-ink-15. Since G-B involves higher percentage of thinner and larger-area graphene flakes, the degree of agglomeration against the dispersion of graphene powders will increase, thereby causing the increase of viscosity [56].
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
如图2所示,用XPS和拉曼光谱法评估了石墨烯粉的质量。GA和GB的C1s / O1s值分别为27.6和34.1,远高于GO [46],表明氧化程度相对较低。如图2a和b所示,还观察到GA和GB的XPS光谱,以及可以与参考光谱拟合的sp2碳的峰,还观察到归因于Csingle键OH键和Csingle键Osingle键C键的峰[ 47]。通过拉曼光谱法(图2c)可以得到类似的结论,其中粗石墨粉具有他人[30],[48],[49]报告的典型光谱,ID / IG比约为0.06。在GA和GB处未发现2D石墨带的肩峰[50],[51],GA和GB的2D带形状与参考文献[22],[26]报道的石墨烯油墨的形状非常相似,表明两种石墨烯粉末的剥落度很高。剥落还会使GA和GB的ID / IG分别略微增加至0.17和0.09,但由于石墨烯基面中存在大量缺陷,导致合并的G和D'峰加宽成为一个宽键[52] ],[53]未找到。因此,增加的ID / IG可以归因于主要附着有含氧官能团的石墨烯薄片边缘[22] [54]。根据XPS和Roman的结果,可以得出结论,GA和GB几乎没有缺陷,这些缺陷会降低石墨烯薄片的电导率,<br><br><br>下载:下载高分辨率图像(299KB)下载:下载全尺寸图像<br>图2。(a),(b)GA和GB的C1s X射线光电子能谱。(c)石墨,GA和GB的拉曼光谱(514 nm)。<br><br>3.2石墨烯/炭黑油墨的流变特性<br>具有适当流变性能的丝网印刷导电油墨能够具有出色的可印刷性能,可以将其转移到边缘更光滑的细线中,并且有利于消除印刷图案中的缺陷和气泡,从而使它们具有更高的电导率。因此,使用平板流变仪研究了炭黑含量和石墨烯粉的性能如何影响石墨烯/炭黑油墨的流变行为。如图3a所示,测量了来自稳态流动阶跃试验的不同剪切速率下的粘度。可以看出,油墨的粘度随着剪切速率的增加而降低,这是假塑性流体的典型性能。也,具有高电导率的导电炭黑通常具有较高的表面积和结构,并包含大量的微孔[55],所有这些都会增加导电填料分散的难度。因此,具有较高炭黑含量的导电油墨在出现明显的样品溢出之前,在相同的剪切速率下表现出较高的粘度,这对于GA-ink-15而言大约为1 s-1。剪切速率越高,浆料的喷射越快,因此当剪切速率超过某个值(例如,GA-ink-15为26.2 s-1)时,炭黑的油墨粘度低于GA-ink-0的粘度。尽管导电填料中所含的炭黑含量相同,但GB-ink-15的油墨粘度高于GA-ink-15的油墨粘度。由于GB涉及较高比例的较薄和较大面积的石墨烯薄片,
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
如图2所示,对XPS和拉曼光谱进行了评估石墨烯粉末的质量。G-A 和 G-B 的 C1s/O1 值分别为 27.6 和 34.1,远高于 GO [46]值,表明氧化程度相对较低。如图2a和b所示,G-A和G-B的XPS光谱,以及可与参考光谱结合的sp2碳的峰值,也观察到Cingle粘结和Csingle粘结C键的峰[47]。拉曼光谱学(图2c)也有类似的结论,其中原始石墨粉末具有其他人报告的典型光谱[30]、[48]、[49],ID/IG比率为[0.06] 。在G-A和G-B[50],[51]中找不到2D波段石墨的肩峰,G-A和G-B的2D波段形状与参考文献[22],[26]报告的石墨烯油墨的形状非常相似,表明两种石墨粉的去角质程度很高。去角质还导致G-A和G-B的ID/IG分别小到0.17和0.09,但由于石墨烯基面[52],[53]中存在大量缺陷,将G和D+峰合并为一个宽粘结。因此,ID/IG 的增加可归因于含氧功能组主要附着的石墨烯片边缘 [22]。[54]。从XPS和罗曼的结果可以得出结论,G-A和G-B具有很少的缺陷,会降低石墨烯片的导电性,较高的氧含量和ID/IG可以归因于其更小的均值面积和附带更多的片状边缘,这已经通过AFM结果认证。<br><br>下载 : 下载高分辨率图像 (299KB) 下载 : 下载全尺寸图像<br>图2。(a)(b) G-A和G-B的C1s X射线光电子光谱。(c) 石墨、G-A和G-B的拉曼光谱(514纳米)。<br><br>3.2 石墨烯/碳黑油墨的流变特性<br>具有适当流变特性的丝网印刷导电油墨具有优异的可打印性能,可转移到边缘更平滑的更薄的线条中,并有利于消除打印图案中的缺陷和气泡,使其具有更高的导电性。因此,利用板式流变仪对炭黑含量和石墨烯粉末的特性如何影响石墨烯/碳黑油墨的流变行为进行了调查。测量了与稳态流量步进测试不同剪切速率的粘度,如图所示。3a.可以看到油墨粘度随着剪切率的增加而下降,这是伪塑料流体的典型性能。此外,导电率高的导电炭黑通常具有较高的表面积和结构,并含有大量微孔[55],所有这些都将提高导电填料分散的难度。因此,导电 i
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
用XPS和Raman光谱来评估石墨烯粉末的质量,如图2所示。G-A和G-B的C1s/O1s值分别为27.6和34.1,远高于GO[46],表明氧化程度相对较低。如图2a和b所示,还观察到G-A和G-b的XPS光谱,以及可以与参考光谱拟合的sp2碳峰,以及归属于Csingle bondOH键和Csingle bondOsingle bondC键的峰[47]。通过拉曼光谱(图2c)也可以得出类似的结论,其中未加工石墨粉具有其他人[30]、[48]、[49]报告的典型光谱,ID/IG比为~0.06。在G-A和G-B[50]、[51]处没有发现石墨二维带的肩峰,G-A和G-B的二维带形状与文献[22]、[26]报道的石墨烯墨水的二维带形状非常相似,说明两种石墨烯粉体的剥落程度较高。剥落也使G-a和G-B的ID/IG略有增加,分别为0.17和0.09,但没有发现由于石墨烯基面上出现大量缺陷而使G和D′峰变宽而合并成一个宽键[52],[53]。因此,ID/IG的增加可归因于石墨烯薄片边缘[22],其上主要附着含氧官能团[54]。从XPS和Roman的结果可以看出,G-A和G-B几乎不存在会降低石墨烯薄片导电性的缺陷,而其较高的氧含量和ID/IG可能是由于其平均面积较小,并伴有较多的鳞片边缘,这已经被AFM结果所证实。<br>下载:下载高分辨率图像(299KB)下载:下载全尺寸图像<br>图2。(a) (b)G-a和G-b的C1s X射线光电子能谱(c)石墨、G-a和G-b的拉曼光谱(514nm)。<br>炭黑/石墨烯油墨的流变性能<br>具有适当流变性能的丝网印刷导电油墨具有优良的印刷性能,可转移成更细、边缘更光滑的线条,有利于消除印刷图案中的缺陷和气泡,使其具有较高的导电性。因此,采用平板流变仪研究了炭黑含量和石墨烯粉体性质对石墨烯/炭黑油墨流变性能的影响。测量了稳态流动阶跃试验在不同剪切速率下的粘度,如图3a所示,可以看出油墨的粘度随着剪切速率的增加而下降,这是假塑性流体的典型性能。另外,导电性高的导电炭黑通常具有更高的比表面积和结构,并且含有大量的微孔[55],这些都会增加导电填料分散的难度。因此,具有较高炭黑含量的导电油墨在相同的剪切速率下表现出更高的粘度,而对于G-A-ink-15而言,在出现明显的样品溢出之前(约1s−1)。剪切速率越高,喷浆速度越快,因此当剪切速率超过一定值时,含炭黑的油墨粘度低于G-A-ink-0的粘度,例如G-A-ink-15的粘度为26.2 s−1。尽管导电填料中炭黑含量相同,但G-B-ink-15的油墨粘度高于G-A-ink-15。由于G-B涉及到更薄和更大面积的石墨烯薄片的比例更高,因此,石墨烯粉末分散的团聚程度将增加,从而导致粘度增加[56]。
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: