The cross-spectra show that the stall propagation rate is 0.93 Hz, 6.2 percent of the impeller speed, and that the stall travels from the passages located on the exit side of the volute toward the beginning side,crossing the tongue region in the same direction as the impeller, where it diminishes.Under stall conditions the flow in the diffuser passage alternates between outward jetting,when the low-pass-filtered pressure is high, to a reverse flow, when the filtered pressure is low. Being below design conditions, there is a consistent high-speed leakage flow in the gap between the impeller and the diffuser from the exit side to the beginning of the volute.Separation of this leakage flow from the diffuser vane causes the onset of the stall. The magnitude of the leakage and the velocity distribution in the gap depend on the orientation of the impeller blade. Conversely, the flow in a stalled diffuser passage and the occurrence of stall do not vary significantly with blade orientation. With decreasing flow-rate the magnitudes of leakage and reverse flow within a stalled diffuser passage increase, and the stall-cell size extends from one to two diffuser passages.