基于高斯过程分类的应用近年来受到越来越多的关注。另外,高斯过程分类与一些经典算法相结合,形成了一些有实用价值的变形算法,如带约束的高斯过程。的英语翻译

基于高斯过程分类的应用近年来受到越来越多的关注。另外,高斯过程分类与一

基于高斯过程分类的应用近年来受到越来越多的关注。另外,高斯过程分类与一些经典算法相结合,形成了一些有实用价值的变形算法,如带约束的高斯过程。再次,高斯过程是一种基于核技术的模型。非线性学习是机器学习模型及算法设计过程中面临的重要挑战。核技术( kernel trick)作为实现模型非线性学习的有力工具,近年来已在机器学习、模式识别等领域被广泛使用。而核函数作为一种特殊的协方差函数,可以被用于构建(或直接替换)高斯过程中的协方差函数,从而实现高斯过程模型的非线性学习。同时,在模型优化过程中,高斯过程模型可以通过最大化边际似然的形式对核函数中包含的超参数进行优化,有效的减少了核函数参数选择带来的计算代价。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
The application of classification based on Gaussian process has received more and more attention in recent years. <br>In addition, the Gaussian process classification is combined with some classic algorithms to form some practically valuable deformation algorithms, such as the Gaussian process with constraints. Again, the Gaussian process is a model based on nuclear technology. Non-linear learning is an important challenge in the process of machine learning model and algorithm design. Kernel trick, as a powerful tool to realize model nonlinear learning, has been widely used in machine learning, pattern recognition and other fields in recent years. As a special covariance function, the kernel function can be used to construct (or directly replace) the covariance function in the Gaussian process, so as to realize the nonlinear learning of the Gaussian process model. At the same time, in the process of model optimization, the Gaussian process model can optimize the hyperparameters contained in the kernel function by maximizing the marginal likelihood, which effectively reduces the computational cost of the kernel function parameter selection.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
The application of Gauss process classification has received more and more attention in recent years.<br>In addition, Gauss process classification is combined with some classical algorithms to form some useful deformation algorithms, such as the constrained Gauss process. Third, the Gauss process is a model based on nuclear technology. Nonlinear learning is an important challenge in the design of machine learning models and algorithms. Kernel trick, as a powerful tool for implementing nonlinear learning of models, has been widely used in machine learning, pattern recognition and other fields in recent years. As a special covariance function, the nuclear function can be used to build (or directly replace) the covariance function in gaussy process, so as to realize the nonlinear learning of Gauss process model. At the same time, in the process of model optimization, Gauss process model can optimize the superparametrics contained in the nuclear function by maximizing the marginal likelihood, effectively reducing the computational cost of the choice of nuclear function parameters.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
In recent years, the application of Gaussian process classification has attracted more and more attention.<br>In addition, Gaussian process classification is combined with some classical algorithms to form some practical deformation algorithms, such as constrained Gaussian process. Thirdly, Gaussian process is a model based on kernel technology. Nonlinear learning is an important challenge in the design of machine learning models and algorithms. As a powerful tool to realize model nonlinear learning, kernel trick has been widely used in machine learning, pattern recognition and other fields in recent years. As a special covariance function, kernel function can be used to construct (or directly replace) covariance function in Gaussian process, so as to realize nonlinear learning of Gaussian process model. At the same time, in the process of model optimization, Gaussian process model can optimize the super parameters contained in the kernel function by maximizing the marginal likelihood, which can effectively reduce the computational cost of kernel function parameter selection.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: