In the AleSneCu ternary system, for compositions where themiscibility 的简体中文翻译

In the AleSneCu ternary system, for

In the AleSneCu ternary system, for compositions where themiscibility gap is stabilized, one of the main challenges in themanufacturing process is to cross the large liquidus-solidus temperature range. This characteristic can lead to an inhomogeneousdistribution of b-Sn particles. The liquid immiscibility causes severesegregation mainly due to the large density difference between theAl-rich and Sn-rich liquids. It was reported that the monotecticreaction is very sensitive to the level of gravity and the undercooling condition prior to crystallization, [23,24]. Even undermicrogravity conditions, a coarse phase separation occurs due tothe Marangoni motion [25]. However, the use of rapid solidificationcan allow obtaining an homogeneous refined microstructure evenwhen the solidification pathway involve a stable or metastablemiscibility gap [10,19,22,23,26e28].The traditional plain bearing manufacturing process uses beltcasting of thick Al20Sn1Cu strips followed by several rolling passesto reduce the thickness and join the “antifriction” material to an Alinterlayer and this to the steel of the bearing back. In this work, theAl20Sn1Cu alloy was produced by rapid solidification which allowsa solidification pathway throughout the metastable miscibility gap.Also, the effect of the Mn addition on the microstructure andproperties was studied. The melt-spinning technique was used toobtain thin ribbons with a refined microstructure and improvedmechanical and surface properties. It is expected to reduce rollingpasses needed to manufacture plain bearings and to obtain a material with higher strength and wear resistance that improve theperformance of the Al20Sn1Cu alloy currently used in plainbearings.2. Experimental methodsSamples of Al20Sn1Cu and Al20Sn1Cu0.5Mn (wt.%) were produced by Belt Casting (BC), Twin Roller (TR) and Single Roller MeltSpinning (SR) techniques. Master alloys, BC and TR samples wereprepared in air by Sintermetal S.A., meanwhile SR melt-spunsamples were prepared at laboratory scale in a reduced heliumatmosphere with a previous vacuum of 106 Torr using quartznozzles with a closed-loop controlled ejection temperature at~800 C and with two different wheel speed, 1.5 m/s and 7 m/s.Table 1 shows the samples code and the alloy nominal chemicalcompositions.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
在AleSneCu三元体系中,对于可溶混间隙稳定的成分,制造过程中的主要挑战之一是跨越较大的液相线-固相线温度范围。此特性可能导致b-Sn颗粒分布不均匀。液体不溶混性导致严重的偏析,这主要是由于富铝和富锡液体之间的密度差很大。据报道,在结晶之前,单晶反应对重力水平和过冷条件非常敏感[23,24]。即使在微重力条件下,由于Marangoni运动也会发生粗大的相分离[25]。但是,即使凝固途径涉及稳定或亚稳态的混溶间隙,快速凝固的使用仍可以得到均质的细化微观结构[10,19,22,[23,26e28]。传统的滑动轴承制造工艺使用厚Al20Sn1Cu带钢进行带铸,然后进行多次轧制以减小厚度,并将“减摩”材料连接到Alinterlayer上,然后再将其连接到轴承后背的钢上。在这项工作中,Al20Sn1Cu合金是通过快速凝固生产的,从而允许一条贯穿整个亚稳态溶混间隙的凝固途径。此外,还研究了Mn的添加对组织和性能的影响。熔体纺丝技术用于获得具有完善的微观结构和改善的机械和表面性能的薄带。期望减少制造滑动轴承所需的滚动次数,并获得具有更高强度和耐磨性的材料,从而改善目前用于滑动轴承的Al20Sn1Cu合金的性能。<br>2.实验方法通过带式铸造(BC),双辊(TR)和单辊熔体纺丝(SR)技术生产Al20Sn1Cu和Al20Sn1Cu0.5Mn(wt。%)的样品。Sintermetal SA在空气中制备母合金,BC和TR样品,同时在实验室规模下在减压的氦气中制备SR熔融纺丝样品,之前的真空度为10-6 Torr,使用石英喷嘴,闭环温度控制在约800℃。 ?C和两种不同的车轮速度1.5 m / s和7 m / s。表1显示了样品代号和合金标称化学成分。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
在 AleSneCu 三元系统中,对于稳定易性间隙的成分,制造过程中的主要挑战之一是跨越较大的液液-固体温度范围。这一特性可导致b-Sn粒子的不均匀分布。液体不易分,主要由于富Al和Sn富液体之间的密度差异较大,导致严重隔离。据报道,单子反应对结晶前的重力和冷却条件非常敏感[23,24]。即使微相条件不足,由于马兰戈尼运动[25],也发生粗相分离。然而,使用快速凝固可以获得均匀的精炼微观结构,即使凝固通路涉及稳定或元稳定性间隙[10,19,22,23,26e28]。传统的普通轴承制造工艺采用厚Al20Sn1Cu条的皮带铸,然后进行多次滚动刀路,以减少厚度,将"反材料"加入到铝层中,并用于轴承的钢背。在这项工作中,Al20Sn1Cu合金通过快速凝固产生,使凝固通路贯穿于元稳定杂项间隙。同时,研究了Mn加法对微观结构和结构的影响。熔体纺纱技术采用细带技术,采用精细的微观结构,改善机械和表面性能。它有望减少制造普通轴承所需的滚动通道,并获得具有更高强度和耐磨性的材料,从而提高目前用于普通轴承的 Al20Sn1Cu 合金的性能。<br>2. Al20Sn1Cu和Al20Sn1Cu0.5Mn(wt.%)的实验方法由皮带铸造(BC)、双辊(TR)和单辊熔布(SR)技术生产。主合金、BC 和 TR 样品由烧结金属公司在空气中准备, 同时,SR 熔体泵在减少的氦气层中以实验室规模进行,以前真空为 106 Torr,使用石英喷嘴,闭环控制喷射温度为±800 C,车轮速度为 1.5 m/s 和 7 m/s。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
In the AleSneCu ternary system, for compositions where themiscibility gap is stabilized, one of the main challenges in themanufacturing process is to cross the large liquidus-solidus temperature range. This characteristic can lead to an inhomogeneousdistribution of b-Sn particles. The liquid immiscibility causes severesegregation mainly due to the large density difference between theAl-rich and Sn-rich liquids. It was reported that the monotecticreaction is very sensitive to the level of gravity and the undercooling condition prior to crystallization, [23,24]. Even undermicrogravity conditions, a coarse phase separation occurs due tothe Marangoni motion [25]. However, the use of rapid solidificationcan allow obtaining an homogeneous refined microstructure evenwhen the solidification pathway involve a stable or metastablemiscibility gap [10,19,22,23,26e28].The traditional plain bearing manufacturing process uses beltcasting of thick Al20Sn1Cu strips followed by several rolling passesto reduce the thickness and join the “antifriction” material to an Alinterlayer and this to the steel of the bearing back. In this work, theAl20Sn1Cu alloy was produced by rapid solidification which allowsa solidification pathway throughout the metastable miscibility gap.Also, the effect of the Mn addition on the microstructure andproperties was studied. The melt-spinning technique was used toobtain thin ribbons with a refined microstructure and improvedmechanical and surface properties. It is expected to reduce rollingpasses needed to manufacture plain bearings and to obtain a material with higher strength and wear resistance that improve theperformance of the Al20Sn1Cu alloy currently used in plainbearings.2. Experimental methodsSamples of Al20Sn1Cu and Al20Sn1Cu0.5Mn (wt.%) were produced by Belt Casting (BC), Twin Roller (TR) and Single Roller MeltSpinning (SR) techniques. Master alloys, BC and TR samples wereprepared in air by Sintermetal S.A., meanwhile SR melt-spunsamples were prepared at laboratory scale in a reduced heliumatmosphere with a previous vacuum of 106 Torr using quartznozzles with a closed-loop controlled ejection temperature at~800 C and with two different wheel speed, 1.5 m/s and 7 m/s.Table 1 shows the samples code and the alloy nominal chemicalcompositions.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: