支持向量机是一种基于统计学习理论的机器学习方法,可以分析数据,识别模式,用于分类和回归,同时支持向量机所需训练样本少,泛化能力强。支持向量回的英语翻译

支持向量机是一种基于统计学习理论的机器学习方法,可以分析数据,识别模式

支持向量机是一种基于统计学习理论的机器学习方法,可以分析数据,识别模式,用于分类和回归,同时支持向量机所需训练样本少,泛化能力强。支持向量回归主要是通过升维后,在高维空间中构造线性决策函数来实现线性回归,为适应训练样本集的非线性,传统的拟合方法通常是在线性方程后面加高阶项,容易产生过拟合的问题。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
Support vector machine is a machine learning method based on statistical learning theory, which can analyze data, identify patterns, and use it for classification and regression. At the same time, support vector machine requires less training samples and has strong generalization ability. Support vector regression mainly realizes linear regression by constructing a linear decision function in a high-dimensional space after dimensional increase. In order to adapt to the nonlinearity of the training sample set, the traditional fitting method usually adds a higher-order term after the linear equation, which is easy to use. There is an overfitting problem.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
Support vector machine is a machine learning method based on statistical learning theory. It can analyze data, recognize patterns, and be used for classification and regression. At the same time, support vector machine needs less training samples and has strong generalization ability. Support vector regression mainly realizes linear regression by constructing linear decision function in high-dimensional space after dimension upgrading. In order to adapt to the nonlinearity of training sample set, the traditional fitting method usually adds high-order terms after the linear equation, which is easy to produce the problem of over fitting.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
Support vector machine is a machine learning method based on statistical learning theory, which can analyze data and identify patterns for classification and regression. At the same time, support vector machine needs fewer training samples and has strong generalization ability. Support vector regression (SVR) mainly realizes linear regression by constructing linear decision function in high-dimensional space after dimension elevation. In order to adapt to the nonlinearity of training sample set, the traditional fitting method usually adds higher-order term after linear equation, which is prone to over-fitting.
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: