This issue led to the development of drug-eluting stents (DES). DES technology uses a coating of an antiproliferative drug on top of the metallic structure of stents with the benefit of causing less neointimal hyperplasia and stent restenosis as compared with BMS. Late stent thrombosis is also associated with DES due to impaired arterial healing with a lack if re-endothelialization and fibrin deposition due to underlying chronic inflammation more commonly in first-generation DES. Second-generation DES has an extra coating of biocompatible polymer with better endothelial healing. Cobalt-chromium everolimus-eluting stents (second-generation DES) is safer than paclitaxel-eluting stent (first-generation DES) and BMS due to better vascular healing and re-endothelialization of stent struts as evidenced in an animal model. Recent studies show that second-generation DES with biodegradable polymer coating proved to have more efficacy in reducing target-vessel revascularization (TVR), target-lesion revascularization (TLR), in-stent late loss (ISLL), and late-stent thrombosis as compared to BMS. Studies also showed the higher efficacy of DES in complex lesion as compared to BMS.