Introduction1.1 Operational Modal Analysis: A New Discipline?The use o的简体中文翻译

Introduction1.1 Operational Modal A

Introduction1.1 Operational Modal Analysis: A New Discipline?The use of experimental tests to gain knowledge about the dynamic response of civil structures is a well-established practice. In particular, the experimental identification of the modal parameters can be dated back to the middle of the Twentieth Century (Ewins 2000). Assuming that the dynamic behavior of the structure can be expressed as a combination of modes, each one characterized by a set of parameters (natural frequency, damping ratio, mode shape) whose values depend on geometry, material properties, and boundary conditions, Experimental Modal Analysis (EMA) identifies those parameters from measurements of the applied force and the vibration response.In the last decades the principles of system identification and the experimental estimation of the modal parameters have provided innovative tools for the under¬standing and control of vibrations, the optimization of design, and the assessment of performance and health state of structures. In fact, even if the Finite Element (FE) method and the fast progress in computing technologies have made excellent analysis tools available to the technical community, the development of new high- performance materials and the increasing complexity of structures have required powerful tools to support and validate the numerical analyses. In this context the experimental identification of the modal properties definitely supports the engineers to get more physical insight about the dynamic behavior of the structure and to discriminate between the errors due to discretization and those due to simplified or even wrong modeling assumptions. Moreover, since the vibration response originates from the modes, which are inherent properties of the structure, forces exciting the structure at resonant frequencies yield large vibration responses that can result in discomfort or even damage. Regular identification of modal para¬meters and analysis of their variation can support the assessment of structural performance and integrity.Since the origin of EMA, testing equipment and data processing algorithms have significantly evolved. EMA is currently a well-established field, based on a soundC. Rainieri and G. Fabbrocino, Operational Modal Analysis of Civil Engineering 1 Structures: An Introduction and Guide for Applications, DOI 10.1007/978-1-4939-0767-0_1, # Springer Science+Business Media New York 2014
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
引言<br>1.1运营模式分析:新学科?<br>使用实验测试来获得有关土木结构动力响应的知识是一种公认​​的做法。特别地,模态参数的实验识别可以追溯到20世纪中叶(Ewins 2000)。假设结构的动态行为可以表示为模式的组合,每个模式都具有一组参数(固有频率,阻尼比,模式形状),这些参数的值取决于几何形状,材料特性和边界条件,实验模态分析(EMA)从施加力和振动响应的测量结果中识别出这些参数。<br>在过去的几十年中,系统识别的原理和模态参数的实验估算为振动的理解和控制,设计的优化以及结构的性能和健康状态的评估提供了创新的工具。实际上,即使有限元(FE)方法和计算技术的飞速发展为技术界提供了出色的分析工具,但新型高性能材料的开发和结构日益复杂的需求也需要强大的工具来支持并验证数值分析。在这种情况下,模态特性的实验确定无疑支持工程师获得有关结构动态行为的更多物理见解,并区分由于离散化导致的误差与由于简化甚至错误的建模假设而导致的误差。此外,由于振动响应源自于模态,而模态是结构的固有特性,因此以共振频率激发结构的力会产生较大的振动响应,从而可能导致不适甚至损坏。模态参数的定期识别及其变化分析可以支持对结构性能和完整性的评估。这是结构的固有特性,以共振频率激励结构的力会产生较大的振动响应,从而可能导致不适甚至损坏。模态参数的定期识别及其变化分析可以支持对结构性能和完整性的评估。这是结构的固有特性,以共振频率激励结构的力会产生较大的振动响应,从而可能导致不适甚至损坏。模态参数的定期识别及其变化分析可以支持对结构性能和完整性的评估。<br>自EMA诞生以来,测试设备和数据处理算法已经有了长足的发展。EMA目前是一个完善的领域,其基础是<br>C. Rainieri和G. Fabbrocino 的声音,《土木工程的操作模态分析1结构:应用简介和指南》,DOI 10.1007 / 978-1-4939-0767-0_1, #Springer Science + Business Media New York 2014
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
Introduction<br>1.1 Operational Modal Analysis: A New Discipline?<br>The use of experimental tests to gain knowledge about the dynamic response of civil structures is a well-established practice. In particular, the experimental identification of the modal parameters can be dated back to the middle of the Twentieth Century (Ewins 2000). Assuming that the dynamic behavior of the structure can be expressed as a combination of modes, each one characterized by a set of parameters (natural frequency, damping ratio, mode shape) whose values depend on geometry, material properties, and boundary conditions, Experimental Modal Analysis (EMA) identifies those parameters from measurements of the applied force and the vibration response.<br>In the last decades the principles of system identification and the experimental estimation of the modal parameters have provided innovative tools for the under¬standing and control of vibrations, the optimization of design, and the assessment of performance and health state of structures. In fact, even if the Finite Element (FE) method and the fast progress in computing technologies have made excellent analysis tools available to the technical community, the development of new high- performance materials and the increasing complexity of structures have required powerful tools to support and validate the numerical analyses. In this context the experimental identification of the modal properties definitely supports the engineers to get more physical insight about the dynamic behavior of the structure and to discriminate between the errors due to discretization and those due to simplified or even wrong modeling assumptions. Moreover, since the vibration response originates from the modes, which are inherent properties of the structure, forces exciting the structure at resonant frequencies yield large vibration responses that can result in discomfort or even damage. Regular identification of modal para¬meters and analysis of their variation can support the assessment of structural performance and integrity.<br>Since the origin of EMA, testing equipment and data processing algorithms have significantly evolved. EMA is currently a well-established field, based on a sound<br>C. Rainieri and G. Fabbrocino, Operational Modal Analysis of Civil Engineering 1 Structures: An Introduction and Guide for Applications, DOI 10.1007/978-1-4939-0767-0_1, # Springer Science+Business Media New York 2014
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
介绍<br>1.1运作模式分析:一门新学科?<br>利用试验测试来获得有关土木结构动态响应的知识是一种行之有效的做法。特别是,模态参数的实验识别可以追溯到二十世纪中叶(Ewins 2000)。假设结构的动力特性可以表示为模态的组合,每个模态的特征是一组参数(固有频率、阻尼比、振型),其值取决于几何结构、材料特性和边界条件,实验模态分析(EMA)通过测量力和振动响应来识别这些参数。<br>近几十年来,系统辨识原理和模态参数的实验估计为振动的监测和控制、设计优化以及结构性能和健康状态评估提供了创新工具。事实上,即使有限元方法和计算技术的快速发展为技术界提供了优秀的分析工具,但新的高性能材料的发展和结构复杂性的增加,都需要强有力的工具来支持和验证数值分析。在这种情况下,模态特性的实验识别无疑支持工程师对结构的动态特性有更多的物理了解,并区分由于离散化引起的误差和由于简化甚至错误的建模假设引起的误差。此外,由于振动响应来源于结构固有特性的模态,因此在共振频率下激励结构的力会产生较大的振动响应,从而导致不适甚至损坏。定期识别模态参数并分析其变化可以支持对结构性能和完整性的评估。<br>自EMA产生以来,测试设备和数据处理算法都有了长足的发展。EMA目前是一个很好的领域,基于声音<br>C、 Rainieri和G.Fabbrocino,《土木工程1结构的操作模态分析:应用简介和指南》,DOI 10.1007/978-1-4939-0767-0Š1,ŠSpringer Science+商业媒体纽约2014<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: