该数据经过PCA处理之后,得到的标准化数据的相关系数矩阵,并使用Jacobian矩阵,以获得相关系数矩阵的特征值、统一特征向量和方差贡献率(的英语翻译

该数据经过PCA处理之后,得到的标准化数据的相关系数矩阵,并使用Jac

该数据经过PCA处理之后,得到的标准化数据的相关系数矩阵,并使用Jacobian矩阵,以获得相关系数矩阵的特征值、统一特征向量和方差贡献率(Table1)。碎石图(Fig.2)中可以看出:当特征值大于1,主成分数目为4, 方差贡献率分别为31.46%、19.06%、18.27%、11.48%。四个主成分的方差累计贡献率达80.27%,各个变量丢失的信息较少,一定程度的满足了缩减计算变量的需求。因此选取15个成分中的主成分个数为4是合理的。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
After the data is processed by PCA, the correlation coefficient matrix of the standardized data is obtained, and the Jacobian matrix is ​​used to obtain the eigenvalues, unified eigenvectors and variance contribution rate of the correlation coefficient matrix (Table1). It can be seen from the gravel map (Fig.2) that when the eigenvalue is greater than 1, the number of principal components is 4, and the variance contribution rates are 31.46%, 19.06%, 18.27%, and 11.48%, respectively. The cumulative contribution rate of the variance of the four principal components reached 80.27%, and the missing information of each variable was less, which satisfies the need to reduce the calculation variables to a certain extent. Therefore, it is reasonable to select 4 principal components among 15 components.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
After the PCA processing of the data, the correlation coefficient matrix of the standardized data is obtained, and the Jacobian matrix is used to obtain the characteristic value, uniform feature vector, and variance contribution rate (Table1) of the correlation coefficient matrix. As can be seen in the gravel map (Fig.2), when the characteristic value is greater than 1 and the number of main components is 4, the variance contribution rate is 31.46%, 19.06%, 18.27% and 11.48%, respectively. The cumulative contribution rate of variance of the four main components is 80.27%, each variable loses less information, and the need to reduce the calculated variable is satisfied to some extent. Therefore, it is reasonable to select the number of main ingredients in 15 ingredients to be 4.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
After PCA processing, the correlation coefficient matrix of standardized data is obtained, and Jacobian matrix is used to obtain the eigenvalue, unified eigenvector and variance contribution rate of correlation coefficient matrix (table1). It can be seen from the gravel map (Fig. 2): when the characteristic value is greater than 1, the main component is 4, and the variance contribution rates are 31.46%, 19.06%, 18.27% and 11.48%, respectively. The cumulative contribution rate of variance of the four principal components is 80.27%, and the missing information of each variable is less, which meets the need of reducing the calculation variables to a certain extent. Therefore, it is reasonable to select the number of principal components of 15 components as 4.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: