9.两阶段最小二乘:目的:针对过度识别的联立方程组,选定有效的工具变量操作:先用简约法对一个方程OLS得到一个内生变量的估计量表示,再将其当的英语翻译

9.两阶段最小二乘:目的:针对过度识别的联立方程组,选定有效的工具变量

9.两阶段最小二乘:目的:针对过度识别的联立方程组,选定有效的工具变量操作:先用简约法对一个方程OLS得到一个内生变量的估计量表示,再将其当做工具变量带入其他方程中,进行OLS(用工具变量来估计内生变量,再将估计出来的内生变量当做新的解释变量进行OLS回归)10.动态性:指前期的某个解释变量会对因变量产生影响11.时间序列(1)误差序列相关时:Dubin-H 统计量(2) Granger Causal Relation Test:检验因果性,将约束和非约束的残差和做差/约束的残差和,如果接近0,就无因果性。约束:作为解释变量的X及其滞后项的系数都为0(3)单位根检验:检验是否平稳,可通过差分/X整(integrated of Xth order)(4)协整:针对不平稳的数据,但线性组合后可能就平稳了,因此将检验残差序列的平稳性,如果平稳,则协整成立,不平稳也OK12.面板数据的固定效应回归对于不同个体(cross section data),回归方程的截距项(intercept term,βi0)不同解决办法:LSDVE:最小二乘虚拟变量估计,即每一个截距引入一个Dummy variable
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
9. Two-stage least squares: <br>Purpose: To select effective instrument variable <br>operations for overidentified simultaneous equations : first use parsimony to obtain an estimate of an endogenous variable for an equation OLS, and then use it as a tool Variables are brought into other equations for OLS (use instrumental variables to estimate endogenous variables, and then use the estimated endogenous variables as new explanatory variables for OLS regression) <br><br>10. Dynamic: <br>refers to a previous explanatory variable will The influence of dependent variables <br>11. Time series <br>(1) When the error series is correlated: Dubin-H statistics <br>(2) Granger Causal Relation Test: test the causality, combine the constrained and unconstrained residuals and the difference/constrained residual , If it is close to 0, there is no causality. Constraint: The coefficients of X and its lag items as explanatory variables are both 0. <br>(3) Unit root test: test whether it is stable, which can be integrated/differentiated by Xth order <br>(4) cointegration: for unstable data , but it may be a linear combination of smooth, so the residual stationarity test sequence, if stable, the cointegration established, OK also unstable <br><br>fixed panel 12. the effects regression data <br>for different individuals (cross section data), regression Different solutions for the intercept term (βi0) of the equation <br>: LSDVE: least squares dummy variable estimation, that is, each intercept introduces a dummy variable
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
9. Two-stage minimum-difference:<br>Purpose: Select effective tool variables for over-recognized intermodal systems<br>Operation: First use the simple method to obtain an estimate of an endogenous variable for an equation OLS, and then take it as a tool variable into other equations, to make OLS (to estimate endogenous variables with tool variables, and then to estimate endogenous variables as new explanatory variables for OLS regression)<br><br>10.Dynamic:<br>A previous explanatory variable has an effect on the dependent variable<br>11.Time series<br>(1) When the error sequence is related: Dubin-H statistics<br>(2) Granger Causal Relation Test: Test causality, will constrain and non-constraint residuals and do difference/constraint residuals and, if close to 0, no causality. Constraint: X as an explanatory variable and its lag term have a coefficient of 0<br>(3) Unit root inspection: check whether it is smooth, through the difference / X whole (integrated of Xth order)<br>(4) co-integration: for uneven data, but the linear combination may be stable, so will test the stability of the residual sequence, if stable, then co-integration is established, not smooth also OK<br><br>12. Fixed effect regression of panel data<br>For different individuals (cross section data), the intercept term of the regression equation (intercept term, betai0) is different<br>Solution: LSDVE: Least-squares virtual variable estimation, i.e. one Dummy variable per intercept introduced
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
9. Two stage least squares<br>Objective: to select effective instrumental variables for over identified simultaneous equations<br>Operation: firstly, get the estimator of an endogenous variable for an equation OLS, and then use it as a tool variable to carry out OLS (estimate the endogenous variable with instrumental variable, and then use the estimated endogenous variable as a new explanatory variable for OLS regression)<br>10. Dynamic:<br>It refers to the influence of an explanatory variable in the earlier period on the dependent variable<br>11. Time series<br>(1) Correlation of error sequences: dubin-h statistics<br>(2) Granger causal relation test: Test causality. Sum the constrained and unconstrained residuals and the error / constraint residuals. If it is close to 0, there is no causality. Constraint: the coefficients of X and its lag term as explanatory variables are 0<br>(3) Unit root test: to test whether it is stable, it can pass the integration of Xth order<br>(4) Cointegration: for non-stationary data, it may be stable after linear combination, so the stationarity of residual sequence will be tested. If it is stable, cointegration will be established, and unstable will be OK<br>12. Fixed effect regression of panel data<br>For different individuals (cross section data), the intercept term (β I0) of regression equation is different<br>Solution: lsdve: least squares virtual variable estimation, that is, each intercept introduces a dummy variable
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: