tastable spinodal decomposition L / L1 þ L2, where L1 is an Al- rich l的简体中文翻译

tastable spinodal decomposition L /

tastable spinodal decomposition L / L1 þ L2, where L1 is an Al- rich liquid phase and L2 is a Sn-rich liquid phase. The metastable miscibility gap for the AleSn system was thermodynamically esti- mated and can be found in Kim et al. [20] and in Mirkovic et al. [19]. The alloy studied in the present work, Al20Sn1Cu, is outside of the stable miscibility gap present in the ternary system. Thus, the microstructure observed in the BC and TR samples, would respond to the solidification pathway of the stable equilibrium phase dia- gram; that is without reaching the metastable miscibility gap.Kong et al. [22] studied the gas-atomised Al12Sn1Cu (wt.%) alloy. They also observed different kind of microstructures for different powder particles size. They found a dendritic and cellular a-Al matrix with Sn segregation at the a-Al grain boundaries for large powder particles and a microstructure of near-spherical small b-Sn particles in an a-Al matrix for small powder particles. More- over, they found that the size of the b-Sn particles decreased as the powder diameter decreased (i.e. cooling rate increased). The BC and TR samples from the present work and their large atomised powder particles developed the same kind of microstructure which sug- gests that had the same solidification pathway. The cooling rate was insufficient to undercool the material into the metastable misci- bility gap before the nucleation of the a-Al, and the liquid would adjust the composition by diffusion until rich the eutecticcomposition. Considering that is not clearly observed an eutectic microstructure at the a-Al grain boundaries, a divorced eutectic could occur due to both the Sn-rich eutectic composition and the cooling rate.Thus, the solidification pathway in those samples can be described as:L/a-AlþL/a-Alþb-SnPrecipitates of the q-Al2Cu intermetallic are also observed at the a-Al grain boundaries. Considering the maximum Cu solubility in b- Sn is in between 0.022 and 0.035 wt% [33,34] it is worth to suggest that the q-Al2Cu is segregated from the a-Al solid solution (maximum solubility in stable equilibrium is ~2.8wt%Cu and 0.05 wt%Cu at room temperature) [19].The melt-spun samples (SR) in the present work and small atomised powder particles in the Kong et al. [22] work show a microstructure characterized by rounded b-Sn particles embedded in an a-Al matrix. Similar observations were made by Kim et al. [20] in melt-spun ribbons of Al5Sn and Al10Sn (wt.%). They found that b-Sn particle size ranged from 1 mm to 50 nm depending on the wheel speed (from 9 m/s to 65 m/s) and the distance from the surface in contact with the wheel. This type of microstructure
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
美味的旋节线分解L / L1 / L2,其中L1是富含Al的液相,L2是富含Sn的液相。AleSn系统的亚稳混溶性缺口是通过热力学估算的,可以在Kim等人的文章中找到。[20]和Mirkovic等。[19]。在本工作中研究的合金Al20Sn1Cu在三元体系中存在的稳定混溶间隙之外。因此,在BC和TR样品中观察到的微观结构将响应稳定平衡相图的凝固路径;这还没有达到亚稳态的混溶性差距。<br>Kong等。[22]研究了气雾化的Al12Sn1Cu(wt。%)合金。他们还观察到了不同粉末尺寸的不同类型的微结构。他们发现了一个树枝状和蜂窝状的a-Al基体,在大粉末颗粒的a-Al晶界处有Sn偏析,在a-Al基质中的近球形小b-Sn颗粒的微观结构对小粉末颗粒而言。此外,他们发现,随着粉末直径的减小(即冷却速率增加),b-Sn颗粒的尺寸减小。目前工作中的BC和TR样品及其大雾化的粉末颗粒具有相同的显微组织,表明其凝固路径相同。冷却速率不足以在a-Al成核之前将材料过冷至亚稳相溶性间隙,<br>组成。考虑到没有清楚地观察到在a-Al晶界处的共晶微观结构,由于富含Sn的共晶成分和冷却速率都可能发生离婚的共晶。<br>因此,这些样品中的凝固路径可描述为:<br>L /a-AlþL/a-Alþb-Sn<br>在a-Al晶界处也观察到q-Al2Cu金属间化合物的沉淀。考虑到铜在b-Sn中的最大溶解度在0.022至0.035 wt%之间[33,34],值得指出q-Al2Cu与a-Al固溶体分离(稳定平衡时的最大溶解度为〜2.8重量%的铜和在室温下为0.05重量%的铜)[19]。<br>本工作中的熔纺样品(SR)和Kong等人的小雾化粉末颗粒。[22]的作品显示了一种微结构,其特征是嵌入a-Al基质中的圆形b-Sn颗粒。Kim等人也做了类似的观察。[20]在熔融纺丝的Al5Sn和Al10Sn带中(重量%)。他们发现,b-Sn粒径范围为1 mm至50 nm,具体取决于砂轮速度(从9 m / s至65 m / s)和与砂轮接触的表面的距离。这种类型的微结构
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
可检测的脊柱分解 L / L1 1 + L2,其中 L1 为富含 Al 的液相,L2 为 Sn 富液相。AleSn系统的元稳定杂项间隙是热力学的,可以在Kim等人[20]和Mirkovic等人[19]找到。本工作研究的合金Al20Sn1Cu在三元系统中存在的稳定杂容间隙之外。因此,在BC和TR样品中观察到的微观结构,会响应稳定平衡相直径克的凝固路径;即没有达到元稳定错位间隙。<br>孔等人[22]研究了气体雾化Al12Sn1Cu(wt.%)合金。他们还观察了不同粉末颗粒大小的不同种类的微观结构。他们发现,在一个Al颗粒边界处有一个树突和细胞al基质,用于大粉末颗粒的Sn分离,在一个用于小粉末颗粒的al基质中发现了近球形小b-Sn粒子的微观结构。随着时间的推移,他们发现b-Sn颗粒的大小随着粉末直径的减小(即冷却率的增加)而减小。BC和TR的样品从目前的工作和他们的大型雾化粉末颗粒发展出相同的微观结构,其中,有相同的凝固路径。冷却速率不足以在 a-Al 成核之前将材料冷却到元稳定错性间隙中,液体会通过扩散来调整成分,直到富富<br>组成。考虑到在al颗粒边界上没有清楚地观察到一个超微结构,由于Sn丰富的桉子组成和冷却速率,可能会发生离异的桉物。<br>因此,这些样品中的凝固通路可以描述为:<br>L/a-Al+L/a-Al 1-Sn<br>在al颗粒边界上也观察到q-Al2Cu金属间的沉淀物。考虑到b-Sn中的最大Cu溶解度在0.022和0.035wt%[33,34]之间,值得建议 q-Al2Cu与al固体溶液分离(在稳定平衡下最大溶解度为[2.8wt%Cu]和0.05wt%Cu在室温下)[19]。<br>本工作中的熔体旋转样品(SR)和孔等人中的小雾化粉末颗粒[22] 显示了一个微观结构,其特征是嵌在a-Al矩阵中的圆形b-Sn颗粒。Kim等人[20]在Al5Sn和Al10Sn(wt.%)的熔融带中也进行了类似的观察。他们发现,b-Sn颗粒尺寸范围从1毫米到50纳米不等,这取决于车轮速度(从9米/s到65米/s)和与车轮接触的表面的距离。这种类型的微观结构
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
tastable spinodal decomposition L / L1 þ L2, where L1 is an Al- rich liquid phase and L2 is a Sn-rich liquid phase. The metastable miscibility gap for the AleSn system was thermodynamically esti- mated and can be found in Kim et al. [20] and in Mirkovic et al. [19]. The alloy studied in the present work, Al20Sn1Cu, is outside of the stable miscibility gap present in the ternary system. Thus, the microstructure observed in the BC and TR samples, would respond to the solidification pathway of the stable equilibrium phase dia- gram; that is without reaching the metastable miscibility gap.Kong et al. [22] studied the gas-atomised Al12Sn1Cu (wt.%) alloy. They also observed different kind of microstructures for different powder particles size. They found a dendritic and cellular a-Al matrix with Sn segregation at the a-Al grain boundaries for large powder particles and a microstructure of near-spherical small b-Sn particles in an a-Al matrix for small powder particles. More- over, they found that the size of the b-Sn particles decreased as the powder diameter decreased (i.e. cooling rate increased). The BC and TR samples from the present work and their large atomised powder particles developed the same kind of microstructure which sug- gests that had the same solidification pathway. The cooling rate was insufficient to undercool the material into the metastable misci- bility gap before the nucleation of the a-Al, and the liquid would adjust the composition by diffusion until rich the eutecticcomposition. Considering that is not clearly observed an eutectic microstructure at the a-Al grain boundaries, a divorced eutectic could occur due to both the Sn-rich eutectic composition and the cooling rate.Thus, the solidification pathway in those samples can be described as:L/a-AlþL/a-Alþb-SnPrecipitates of the q-Al2Cu intermetallic are also observed at the a-Al grain boundaries. Considering the maximum Cu solubility in b- Sn is in between 0.022 and 0.035 wt% [33,34] it is worth to suggest that the q-Al2Cu is segregated from the a-Al solid solution (maximum solubility in stable equilibrium is ~2.8wt%Cu and 0.05 wt%Cu at room temperature) [19].The melt-spun samples (SR) in the present work and small atomised powder particles in the Kong et al. [22] work show a microstructure characterized by rounded b-Sn particles embedded in an a-Al matrix. Similar observations were made by Kim et al. [20] in melt-spun ribbons of Al5Sn and Al10Sn (wt.%). They found that b-Sn particle size ranged from 1 mm to 50 nm depending on the wheel speed (from 9 m/s to 65 m/s) and the distance from the surface in contact with the wheel. This type of microstructure<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: