Abstract At present, the accuracy of real-time moving video image reco的简体中文翻译

Abstract At present, the accuracy o

Abstract At present, the accuracy of real-time moving video image recognition methods are poor. Also energy consumption is high and fault tolerance is not ideal. Consequently this paper proposes a method of moving video image recognition based on BP neural networks. The moving video image is divided into two parts: the key content and the background by binary gray image. By collecting training cubes. The D-SFA algorithm is used to extract moving video image features and to construct feature representation. The image features are extracted by collecting training cubes. The BP neural network is constructed to get the error function. The error signal is returned continuously along the original path. By modifying the weights of neurons in each layer, the weights propagate to the input layer step by step, and then propagates forward. The two processes are repeated to minimize the error signal. The result of image feature extraction is regarded as the input of BP neural network, and the result of moving video image recognition is output. And fault tolerance in real-time is better than the current method. Also the recognition energy consumption is low, and our method is more practical.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
摘要目前,实时运动视频图像识别方法的准确性较差。而且能量消耗高并且容错性也不理想。因此,本文提出了一种基于BP神经网络的运动视频图像识别方法。运动视频图像分为两部分:关键内容和背景图像(通过二进制灰度图像)。通过收集训练立方体。D-SFA算法用于提取运动视频图像特征并构建特征表示。通过收集训练立方体提取图像特征。构造BP神经网络以获得误差函数。错误信号沿原始路径连续返回。通过修改每一层中神经元的权重,权重逐步传播到输入层,然后向前传播。重复两个过程以最小化误差信号。图像特征提取的结果作为BP神经网络的输入,输出运动视频图像识别的结果。实时的容错能力优于当前方法。而且识别能耗低,我们的方法更实用。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
Abstract At present, the accuracy of real-time moving video image recognition methods are poor. Also energy consumption is high and fault tolerance is not ideal. Consequently this paper proposes a method of moving video image recognition based on BP neural networks. The moving video image is divided into two parts: the key content and the background by binary gray image. By collecting training cubes. The D-SFA algorithm is used to extract moving video image features and to construct feature representation. The image features are extracted by collecting training cubes. The BP neural network is constructed to get the error function. The error signal is returned continuously along the original path. By modifying the weights of neurons in each layer, the weights propagate to the input layer step by step, and then propagates forward. The two processes are repeated to minimize the error signal. The result of image feature extraction is regarded as the input of BP neural network, and the result of moving video image recognition is output. And fault tolerance in real-time is better than the current method. Also the recognition energy consumption is low, and our method is more practical.
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
目前,实时运动视频图像识别方法的准确性较差。能耗高,容错性不理想。因此,本文提出了一种基于BP神经网络的运动视频图像识别方法。将运动视频图像分为两部分:关键内容和背景二值灰度图像。通过收集训练数据。采用D-SFA算法提取运动视频图像特征,构造特征表示。通过采集训练立方体提取图像特征。通过构造BP神经网络得到误差函数。错误信号沿着原始路径连续返回。通过修改各层神经元的权值,权值逐步传播到输入层,然后向前传播。重复这两个过程以最小化错误信号。将图像特征提取的结果作为BP神经网络的输入,输出运动视频图像识别的结果。实时容错性优于现有方法。该方法识别能量消耗低,具有较强的实用性。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: