Data mining aims to extract previously unknown patterns or substructur的简体中文翻译

Data mining aims to extract previou

Data mining aims to extract previously unknown patterns or substructures from large databases. In statistics, this is what methods of robust estimation and outlier detection were constructed for, see e.g. Rousseeuw and Leroy (1987). Here we will focus on least trimmed squares (LTS) regression, which is based on the subset of h cases (out of n) whose least squares fit possesses the smallest sum of squared residuals. The coverage h may be set between n/2 and n. The computation time of existing LTS algorithms grows too much with the size of the data set, precluding their use for data mining. In this paper we develop a new algorithm called FAST-LTS. The basic ideas are an inequality involving order statistics and sums of squared residuals, and techniques which we call 'selective iteration' and nested extensions'. We also use an intercept adjustment technique to improve the precision. For small data sets FAST-LTS typically finds the exact LTS, whereas for larger data sets it gives more accurate results than existing algorithms for LTS and is faster by orders of magnitude. This allows us to apply FAST-LTS to large databases.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
数据挖掘旨在从大型数据库中提取以前未知的图案或子。在统计学中,这是构建什么稳健估计和异常检测的方法,例如参见Rousseeuw和乐华(1987)。在这里,我们将专注于截尾最小二乘(LTS)的回归,这是基于h的情况下,子集(出n个),其最小二乘法拟合拥有残差平方的和最小。覆盖h可以N / 2和n之间设定。现有LTS算法的计算时间长了太多与数据集的大小,排除他们的数据挖掘使用。在本文中,我们开发了一个名为FAST-LTS新算法。其基本思想是涉及为了统计和残差平方的总和,和技术,我们称之为“选择性迭代”和嵌套扩展的不平等。我们还使用拦截调节技术,以提高精度。对于小数据集FAST-LTS通常发现确切的LTS,而对于更大的数据集它比为LTS现有算法更精确的结果,并比较快几个数量级。这让我们FAST-LTS适用于大型数据库。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
Data mining aims to extract previously unknown patterns or substructures from large databases. In statistics, this is what methods of robust estimation and outlier detection were constructed for, see e.g. Rousseeuw and Leroy (1987). Here we will focus on least trimmed squares (LTS) regression, which is based on the subset of h cases (out of n) whose least squares fit possesses the smallest sum of squared residuals. The coverage h may be set between n/2 and n. The computation time of existing LTS algorithms grows too much with the size of the data set, precluding their use for data mining. In this paper we develop a new algorithm called FAST-LTS. The basic ideas are an inequality involving order statistics and sums of squared residuals, and techniques which we call 'selective iteration' and nested extensions'. We also use an intercept adjustment technique to improve the precision. For small data sets FAST-LTS typically finds the exact LTS, whereas for larger data sets it gives more accurate results than existing algorithms for LTS and is faster by orders of magnitude. This allows us to apply FAST-LTS to large databases.
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
数据挖掘旨在从大型数据库中提取以前未知的模式或子结构。在统计学中,这就是构建稳健估计和离群点检测方法的目的,参见Rousseeuw和Leroy(1987)。在这里,我们将重点讨论最小二乘(LTS)回归,它是基于其最小二乘拟合具有最小平方和残差的h个情形(n个情形中)的子集。覆盖率h可以设置在n/2和n之间。现有的LTS算法的计算时间随着数据集的大小而增长过多,因此无法用于数据挖掘。本文提出了一种新的算法FAST-LTS。基本思想是一个包含顺序统计量和残差平方和的不等式,以及我们称之为“选择性迭代”和嵌套扩展的技术。我们也使用截距调整技术来提高精度。对于小数据集,FAST-LTS通常能找到精确的LTS,而对于较大的数据集,它给出的结果比现有的LTS算法更精确,并且速度快几个数量级。这使我们能够将FAST-LTS应用于大型数据库。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: