3.9 Side reactions Newcomers to solid phase peptide synthesis reading 的简体中文翻译

3.9 Side reactions Newcomers to sol

3.9 Side reactions Newcomers to solid phase peptide synthesis reading any review on the subject may be forgiven for believing that the technique is fraught with difficulties and that it is virtually impossible to prepare any peptide without encountering major side-reactions. Side-reactions do certainly occur, but most are well documented and can be generally avoided by careful planning of the synthesis and by the appropriate selection of protecting groups and resin linker. The side-reactions that can occur during chain assembly are listed in Table 6; those associated with the cleavage reaction are given in Chapter 3, Table 5. Aspartimide formation requires special mention as this is the side-reaction most likely to be encountered in routine synthesis, the others being normally only observed if the recommendations given in this and subsequent chapters are not followed. The reaction involves attack of the nitrogen attached to the a-carboxy group of aspartic acid or asparagine on the side-chain ester or amide group respectively, resulting in formation of a five-membered imide. This intermediate can suffer a number of fates: it can undergo ring opening with piperidine during Fmoc-removal, leading to formation of the corresponding a- and p-piperidides, or it can survive cleavage from the resin, to later hydrolyse in solution, giving the corresponding a- and p-aspartyl peptides (Figure 10). The reaction is highly sequence dependent, but occurs most frequently with peptides containing the Asp(OtBu)-X motif, where X = Asn(Trt), Gly, Ser, Thr (76). This has particular implications in post-synthetic global phosphorylation strategies where Ser and Thr are commonly incorporated without side-chain protection. The only completely effective solution to this problem involves temporary protection of the nitrogen of the preceding residue, which is most easily achieved by incorporating an Af-Hmbprotected amino acid before the problematic Asp or Asn residue (77). The W-Hmb group offers complete protection against the generation of aspartimides during chain assembly but is removed in the course of the standard TFA-mediated cleavage reaction. The preparation and use of N,O-bisFmocAf-Hmb-amino acids are described in Chapter 5.3.10 Cleavage reaction The cleavage of peptides from acid-sensitive linkers is discussed in Chapter 3, Section 10; cleavage with nucleophiles from hydroxymethylbenzoyl resins is dealt with in Chapter 6, Section 1.2.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
3.9副反应固相肽合成的新手阅读有关该主题的任何评论,都可以原谅,因为他认为该技术充满困难,并且几乎不可能在不遇到重大副反应的情况下制备任何肽。确实会发生副反应,但是有充分的文献记载,通常可以通过仔细计划合成过程以及适当选择保护基团和树脂连接基来避免副反应。表6列出了在链组装过程中可能发生的副反应。第3章表5中给出了与裂解反应相关的那些。天冬酰胺的形成需要特别提及,因为这是常规合成中最可能遇到的副反应,通常只有在不遵循本章及后续章节中给出的建议的情况下,才能遵守其他建议。该反应涉及分别连接在侧链酯或酰胺基团上的连接于天冬氨酸或天冬酰胺的α-羧基上的氮,导致形成五元酰亚胺。该中间体可能会遭受很多命运:在Fmoc去除过程中,它可能与哌啶一起开环,导致形成相应的a-和p-哌啶,或者它可以在树脂裂解后幸存下来,然后在溶液中水解,得到相应的α-和p-天冬氨酰肽(图10)。该反应高度依赖序列,但最常见于含有Asp(OtBu)-X基序的肽,其中X = Asn(Trt),Gly,Ser,Thr(76)。这在合成后的全球磷酸化策略中具有特殊的意义,在该策略中,通常在没有侧链保护的情况下并入Ser和Thr。解决此问题的唯一完全有效的方法是暂时保护先前残基的氮,这可以通过在有问题的Asp或Asn残基之前掺入Af-Hmb保护的氨基酸来轻松实现(77)。W-Hmb基团在链组装过程中提供了针对天冬酰胺生成的完全保护,但在标准TFA介导的裂解反应过程中被除去。N,O-bisFmocAf-Hmb-氨基酸的制备和使用在第5章中进行了描述。解决此问题的唯一完全有效的方法是暂时保护先前残基的氮,这可以通过在有问题的Asp或Asn残基之前掺入Af-Hmb保护的氨基酸来轻松实现(77)。W-Hmb基团在链组装过程中提供了针对天冬酰胺生成的完全保护,但在标准TFA介导的裂解反应过程中被除去。N,O-bisFmocAf-Hmb-氨基酸的制备和使用在第5章中进行了描述。解决此问题的唯一完全有效的方法是暂时保护先前残基的氮,这可以通过在有问题的Asp或Asn残基之前掺入Af-Hmb保护的氨基酸来轻松实现(77)。W-Hmb基团在链组装过程中提供了针对天冬酰胺生成的完全保护,但在标准TFA介导的裂解反应过程中被除去。N,O-bisFmocAf-Hmb-氨基酸的制备和使用在第5章中进行了描述。W-Hmb基团在链组装过程中提供了针对天冬酰胺生成的完全保护,但在标准TFA介导的裂解反应过程中被除去。N,O-bisFmocAf-Hmb-氨基酸的制备和使用在第5章中进行了描述。W-Hmb基团在链组装过程中提供了针对天冬酰胺生成的完全保护,但在标准TFA介导的裂解反应过程中被除去。N,O-bisFmocAf-Hmb-氨基酸的制备和使用在第5章中进行了描述。<br>3.10裂解反应在第3章第10节中讨论了从酸敏感接头裂解肽的过程。用羟甲基苯甲酰基树脂中的亲核试剂进行的裂解在第6章第1.2节中讨论。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
3.9 Side reactions Newcomers to solid phase peptide synthesis reading any review on the subject may be forgiven for believing that the technique is fraught with difficulties and that it is virtually impossible to prepare any peptide without encountering major side-reactions. Side-reactions do certainly occur, but most are well documented and can be generally avoided by careful planning of the synthesis and by the appropriate selection of protecting groups and resin linker. The side-reactions that can occur during chain assembly are listed in Table 6; those associated with the cleavage reaction are given in Chapter 3, Table 5. Aspartimide formation requires special mention as this is the side-reaction most likely to be encountered in routine synthesis, the others being normally only observed if the recommendations given in this and subsequent chapters are not followed. The reaction involves attack of the nitrogen attached to the a-carboxy group of aspartic acid or asparagine on the side-chain ester or amide group respectively, resulting in formation of a five-membered imide. This intermediate can suffer a number of fates: it can undergo ring opening with piperidine during Fmoc-removal, leading to formation of the corresponding a- and p-piperidides, or it can survive cleavage from the resin, to later hydrolyse in solution, giving the corresponding a- and p-aspartyl peptides (Figure 10). The reaction is highly sequence dependent, but occurs most frequently with peptides containing the Asp(OtBu)-X motif, where X = Asn(Trt), Gly, Ser, Thr (76). This has particular implications in post-synthetic global phosphorylation strategies where Ser and Thr are commonly incorporated without side-chain protection. The only completely effective solution to this problem involves temporary protection of the nitrogen of the preceding residue, which is most easily achieved by incorporating an Af-Hmbprotected amino acid before the problematic Asp or Asn residue (77). The W-Hmb group offers complete protection against the generation of aspartimides during chain assembly but is removed in the course of the standard TFA-mediated cleavage reaction. The preparation and use of N,O-bisFmocAf-Hmb-amino acids are described in Chapter 5.<br>3.10 Cleavage reaction The cleavage of peptides from acid-sensitive linkers is discussed in Chapter 3, Section 10; cleavage with nucleophiles from hydroxymethylbenzoyl resins is dealt with in Chapter 6, Section 1.2.
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
3.9副反应固相多肽合成的新来者阅读任何关于该主题的评论,可能会被原谅,因为他们相信该技术充满困难,并且几乎不可能在不遇到主要副反应的情况下制备任何肽。当然也会发生副反应,但大多数都有很好的记录,通常可以通过仔细规划合成和适当选择保护基和树脂连接剂来避免。链式组装过程中可能发生的副反应如表6所示;与解理反应相关的副反应如第3章表5所示。天冬氨酸的形成需要特别注意,因为这是最有可能在常规合成中遇到的副反应,其他反应通常只有在不遵循本章和后续章节中给出的建议的情况下才能观察到。该反应涉及氮分别附着在侧链酯或酰胺基上的天冬氨酸或天冬酰胺的a-羧基上,从而形成五元酰亚胺。这一中间体可能会遭受许多命运:在去除Fmoc的过程中,它可能与哌啶发生开环反应,导致相应的a-和p-哌啶的形成,或者它可以从树脂中解离,然后在溶液中水解,得到相应的a-和p-天冬氨酸肽(图10)。该反应高度依赖于序列,但最常见的是含有Asp(OtBu)-X基序的肽,其中X=Asn(Trt)、Gly、Ser、Thr(76)。这在合成后的全局磷酸化策略中具有特别的意义,其中Ser和Thr通常在没有侧链保护的情况下结合在一起。解决这一问题的唯一完全有效的方法是暂时保护前一个残基的氮,这最容易通过在有问题的Asp或Asn残基之前加入Af-hmb保护的氨基酸来实现(77)。W-Hmb基团在链式组装过程中对天冬氨酸生成具有完全的保护作用,但在标准TFA介导的裂解反应过程中被去除。第五章介绍了N,O-双氟甲基-Hmb-氨基酸的制备和应用。<br>3.10裂解反应第3章第10节讨论了来自酸敏感连接物的肽的裂解;第6章第1.2节讨论了来自羟甲基苯甲酰树脂的亲核试剂的裂解。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: