Poly(lactic acid) or polylactide (PLA), a biodegradable thermoplastic polyester, has gained attention as compared to other polyesters due to its potential to replace conventional petrochemical-based polymers [43] Good processability, sustainability and eco-friendly characteristics make PLA a favourable biopolymer, and it has thus gained attraction in fields such as packaging, textile, automotive composites, and biomedical application [44,45,46,47].PLA is synthesized by direct condensation polymerization of lactic acid (LA) or by ring-opening polymerization (ROP) of lactide acid cyclic dimer, known as lactide [48,49]. Lactic acid is an organic acid which occurs naturally and can be produced by chemical synthesis or fermentation. Due to the prospects of environmental friendliness and using renewable resources instead of petrochemicals, interest in the fermentative production of lactic acid has increased. The carbon source for microbial production of lactic acid can be molasses, sugar cane bagasse, or whey, etc. [50,51]. In the polycondensation process, LA monomers are linked together through the reaction between the -OH and -COOH groups by removal of by-products, resulting to low molecular weight polymer [52].Ring-opening polymerization (ROP) of lactide is used to produce a high molecular weight of PLA. First, the water is removed in a continuous condensation reaction of aqueous LA to produce low molecular weight prepolymers. Through internal transesterification, the prepolymer is then catalytically converted by ‘back-biting’ reaction to the lactide and purified. Three potential forms resulting from the production of cyclic lactide: D,D-lactide (called D-lactide), L,L-lactide (called L-lactide) and L,D- or D,L-lactide (called meso-lactide) [49]. The ratio and sequence of D and L-lactic acid units in the final polymer can be controlled depending on the monomer used and controlling reaction conditions [45].However, PLA suffers certain drawbacks such as poor toughness, slow crystallization rate, and low heat distortion temperature [53,54]. The application of PLA could be extensive if its performance was enhanced to achieve suitable properties. Various approaches have been proposed, for instance, blending with other polymers, plasticizer [43,55,56,57], reinforcing materials in micro- (natural fibres, particles) and nanosize (nanoclays, carbon nanotubes, nanoparticles or nanocrystals) [50,53,58,59,60]. This review is mainly focused on blending PLA with polymers such as PHA, PLA/poly(butylene succinate) (PBS) and other polymers which are discussed further in the following sections.
聚乳酸或聚丙交酯 (PLA) 是一种可生物降解的热塑性聚酯,与其他聚酯相比,由于其取代传统石化聚合物的潜力而受到关注 [43] 良好的加工性、可持续性和环保特性使 PLA 成为一种有利的生物聚合物,因此在包装、纺织、汽车复合材料和生物医学应用等领域获得了吸引力[44,45,46,47]。<br><br>PLA 是通过乳酸 (LA) 的直接缩聚或丙交酯环状二聚体(称为丙交酯)的开环聚合 (ROP) 合成的 [48,49]。乳酸是一种天然存在的有机酸,可以通过化学合成或发酵生产。由于环境友好和使用可再生资源代替石化产品的前景,人们对发酵生产乳酸的兴趣增加。微生物生产乳酸的碳源可以是糖蜜、甘蔗渣或乳清等[50,51]。在缩聚过程中,LA 单体通过去除副产物的 -OH 和 -COOH 基团之间的反应连接在一起,产生低分子量聚合物 [52]。<br><br>丙交酯的开环聚合 (ROP) 用于生产高分子量的 PLA。首先,在水性 LA 的连续缩合反应中除去水以产生低分子量预聚物。通过内部酯交换,预聚物然后通过“回咬”反应催化转化为丙交酯并纯化。环丙交酯产生的三种潜在形式:D,D-丙交酯(称为 D-丙交酯)、L,L-丙交酯(称为 L-丙交酯)和 L,D- 或 D,L-丙交酯(称为内消旋丙交酯) ) [49]。最终聚合物中 D 和 L-乳酸单元的比例和顺序可以根据使用的单体和控制反应条件进行控制 [45]。<br><br>然而,PLA 存在一些缺点,例如韧性差、结晶速度慢和热变形温度低 [53,54]。如果PLA的性能得到增强以达到合适的性能,它的应用可能会很广泛。已经提出了各种方法,例如,与其他聚合物、增塑剂 [43,55,56,57]、微米(天然纤维、颗粒)和纳米尺寸(纳米粘土、碳纳米管、纳米颗粒或纳米晶体)的增强材料混合 [50 ,53,58,59,60]。本综述主要侧重于将 PLA 与聚合物混合,例如 PHA、PLA/聚丁二酸丁二醇酯 (PBS) 和其他聚合物,这些将在以下部分进一步讨论。
正在翻译中..
聚(乳酸)或聚乳酸(PLA)是一种可生物降解的热塑性聚酯,与其他聚酯相比,由于其替代传统石化聚合物的潜力而受到关注[43]良好的加工性、可持续性和环保特性使PLA成为一种有利的生物聚合物,因此,它在包装、纺织、汽车复合材料和生物医学应用等领域具有吸引力[44,45,46,47]。<br>PLA是通过乳酸(LA)的直接缩聚或丙交酯酸环二聚体(称为丙交酯)的开环聚合(ROP)合成的[48,49]。乳酸是一种天然存在的有机酸,可通过化学合成或发酵生产。由于环境友好和使用可再生资源代替石化产品的前景,乳酸发酵生产的兴趣增加。微生物生产乳酸的碳源可以是糖蜜、甘蔗渣或乳清等[50,51]。在缩聚过程中,通过去除副产物,通过-OH和-COOH基团之间的反应将LA单体连接在一起,形成低分子量聚合物[52]。<br>丙交酯的开环聚合(ROP)用于生产高分子量的PLA。首先,在水溶液LA的连续缩合反应中除去水,以产生低分子量预聚物。通过内部酯交换,预聚物通过“后咬”反应催化转化为丙交酯并纯化。由环丙交酯产生的三种潜在形式:D,D-丙交酯(称为D-丙交酯)、L,L-丙交酯(称为L-丙交酯)和L,D-或D,L-丙交酯(称为中丙交酯)[49]。最终聚合物中D和L-乳酸单元的比例和顺序可根据所用单体和控制反应条件进行控制[45]。<br>然而,PLA存在某些缺点,如韧性差、结晶速度慢和热变形温度低[53,54]。如果能够提高聚乳酸的性能以获得合适的性能,那么聚乳酸的应用将是广泛的。已经提出了各种方法,例如,与其他聚合物、增塑剂[43,55,56,57]以及微米(天然纤维、颗粒)和纳米(纳米粘土、碳纳米管、纳米颗粒或纳米晶体)中的增强材料混合[50,53,58,59,60]。本综述主要集中于将PLA与聚合物(如PHA、PLA/聚丁二酸丁二醇酯(PBS))以及其他聚合物共混,这些将在以下章节中进一步讨论。
正在翻译中..