In most cases, whether an estimator is exactly unbiased or what its exact sampling variance is in samples of a given size will be unknown. But we may be able to obtain approximate results about the behavior of the distribution of an estimator as the sample becomes large. For example, it is well known that the distribution of the mean of a sample tends to approximate normality as the sample size grows, regardless of the distribution of the individual observations. Knowledge about the limiting behavior of the distribution of an estimator can be used to infer an approximate distribution for the estimator in a finite sample. To describe how this is done, it is necessary, first, to present some results on convergence of random variables.