深度学习方法存在数据集庞大、特征维度高等问题,这些问题导致其时间效率较低,计算成本大、模型训练代价大。从现实角度考虑,Tor流量识别应该在具的英语翻译

深度学习方法存在数据集庞大、特征维度高等问题,这些问题导致其时间效率较

深度学习方法存在数据集庞大、特征维度高等问题,这些问题导致其时间效率较低,计算成本大、模型训练代价大。从现实角度考虑,Tor流量识别应该在具备较高准确率的同时尽量减少特征选择时间以及模型训练时间。因此本文提出一种有效应对Tor流量稀疏问题且稳定性较强的识别方法,在增加有限计算开销的同时得到较好的识别效果。
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
Deep learning methods have problems with huge datasets and high feature dimensions, which lead to low time efficiency, high computational costs, and high model training costs. From a practical point of view, Tor traffic identification should minimize feature selection time and model training time while maintaining high accuracy. Therefore, this paper proposes an identification method that can effectively deal with the sparse Tor traffic problem and has strong stability, which can obtain a better identification effect while increasing the limited computational overhead.
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
The deep learning method has the problems of large data set and high feature dimension, which lead to its low time efficiency, high computing cost and high cost of model training. From a practical point of view, tor traffic recognition should have high accuracy and minimize feature selection time and model training time. Therefore, this paper proposes an effective and stable identification method to deal with the sparse problem of tor traffic, which can increase the limited computational overhead and get a better identification effect.
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
Deep learning method has some problems, such as huge data set and high feature dimension, which lead to low time efficiency, high calculation cost and high model training cost. From a practical point of view, Tor traffic identification should have a high accuracy while minimizing the time of feature selection and model training. Therefore, this paper proposes an effective and stable identification method to deal with the sparse Tor traffic problem, which can increase the limited computational cost and get a better identification effect.
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: