一般情况,抽样层跟随在卷积层后面,对前一层特征映射图进行二度特征提取。卷积层得益于其结构特点,虽然可以显著减少神经元之间连接路径,减少网络参的英语翻译

一般情况,抽样层跟随在卷积层后面,对前一层特征映射图进行二度特征提取。

一般情况,抽样层跟随在卷积层后面,对前一层特征映射图进行二度特征提取。卷积层得益于其结构特点,虽然可以显著减少神经元之间连接路径,减少网络参数,但是卷积层得到的每一个输出特征映射图的神经元总数并没有显著减少。如果卷积层后面直接加入一个全连接方式的分类器,则分类器的输入维度需要很高,容易造成过拟合的问题
0/5000
源语言: -
目标语言: -
结果 (英语) 1: [复制]
复制成功!
In general, the sampling layer follows the convolutional layer and performs two-degree feature extraction on the feature map of the previous layer. The convolutional layer benefits from its structural characteristics. Although it can significantly reduce the connection paths between neurons and reduce network parameters, the total number of neurons in each output feature map obtained by the convolutional layer has not been significantly reduced. If a fully connected classifier is directly added after the convolutional layer, the input dimension of the classifier needs to be very high, which is likely to cause over-fitting problems
正在翻译中..
结果 (英语) 2:[复制]
复制成功!
In general, the sampling layer follows the reel layer and extracts the feature map of the previous layer for two degrees. The reel layer benefits from its structural characteristics, although it can significantly reduce the connection path between neurons and reduce network parameters, but the total number of neurons for each output feature map obtained by the reel layer has not decreased significantly. If a fully connected classifier is added directly behind the reel layer, the classifier's input dimensions need to be high and prone to overfitted problems
正在翻译中..
结果 (英语) 3:[复制]
复制成功!
In general, the sampling layer follows the convolution layer, and the second degree feature extraction is carried out on the feature map of the previous layer. The convolution layer benefits from its structural characteristics. Although it can significantly reduce the connection path between neurons and reduce the network parameters, the total number of neurons in each output feature map obtained by convolution layer does not significantly decrease. If a fully connected classifier is added directly after the convolution layer, the input dimension of the classifier needs to be very high, which is easy to cause the problem of over fitting<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: