With the development of Web applications, textual documents are not on的简体中文翻译

With the development of Web applica

With the development of Web applications, textual documents are not only getting richer, but also ubiquitously interconnected with users and other objects in various ways, which brings about text-rich heterogeneous information networks. Topic models have been proposed and shown to be useful for document analysis, and the interactions among multi-typed objects play a key role at disclosing the rich semantics of the network. However, most of topic models only consider the textual information while ignore the network structures or can merely integrate with homogeneous networks. None of them can handle heterogeneous information network well. In this paper, we propose a novel topic model with biased propagation (TMBP) algorithm to directly incorporate heterogeneous information network with topic modeling in a unified way. The underlying intuition is that multi-typed objects should be treated differently along with their inherent textual information and the rich semantics of the heterogeneous information network. A simple and unbiased topic propagation across such a heterogeneous network does not make much sense. Consequently, we investigate and develop two biased propagation frameworks, the biased random walk framework and the biased regularization framework, for the TMBP algorithm from different perspectives, which can discover latent topics and identify clusters of multi-typed objects simultaneously. We extensively evaluate the proposed approach and compare to the state-of-the-art techniques on several datasets. Experimental results demonstrate that the improvement in our proposed approach is consistent and promising.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
With the development of Web applications, textual documents are not only getting richer, but also ubiquitously interconnected with users and other objects in various ways, which brings about text-rich heterogeneous information networks. Topic models have been proposed and shown to be useful for document analysis, and the interactions among multi-typed objects play a key role at disclosing the rich semantics of the network. However, most of topic models only consider the textual information while ignore the network structures or can merely integrate with homogeneous networks. None of them can handle heterogeneous information network well. In this paper, we propose a novel topic model with biased propagation (TMBP) algorithm to directly incorporate heterogeneous information network with topic modeling in a unified way. The underlying intuition is that multi-typed objects should be treated differently along with their inherent textual information and the rich semantics of the heterogeneous information network. A simple and unbiased topic propagation across such a heterogeneous network does not make much sense. Consequently, we investigate and develop two biased propagation frameworks, the biased random walk framework and the biased regularization framework, for the TMBP algorithm from different perspectives, which can discover latent topics and identify clusters of multi-typed objects simultaneously. We extensively evaluate the proposed approach and compare to the state-of-the-art techniques on several datasets. Experimental results demonstrate that the improvement in our proposed approach is consistent and promising.
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
随着Web应用的发展,文本文档不仅越来越丰富,而且通过各种方式与用户和其他对象进行无所不在的互连,从而带来了文本丰富的异构信息网络。主题模型已被提出,并证明对文档分析有用,多类型对象之间的交互在揭示网络的丰富语义方面起着关键作用。但是,大多数主题模型只考虑文本信息而忽略网络结构,或者只能与同质网络集成。没有一个能很好地处理异构信息网络。本文提出了一种具有偏向传播(TMBP)算法的新颖主题模型,以统一的方式将异构信息网络与主题建模直接结合。潜在的直觉是,多类型对象应区别对待,随着其固有的文本信息和异构信息网络的丰富语义。在这样一个异构网络中传播简单而公正的主题并无太大意义。因此,我们从不同角度对TMBP算法进行偏颇传播框架、偏置随机游走框架和偏颇正则化框架的探讨和开发,可以同时发现潜在主题并识别多类型对象的聚类。我们广泛评估了建议的方法,并与多个数据集上的最先进的技术进行比较。实验结果表明,我们提出的方法的改进是一致的,有前景的。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
随着Web应用的发展,文本文档不仅越来越丰富,而且以各种方式与用户和其他对象进行了广泛的互联,从而形成了文本丰富的异构信息网络。主题模型已经被提出并证明对文档分析是有用的,而多类型对象之间的交互在揭示网络丰富的语义方面起着关键作用。然而,大多数主题模型只考虑文本信息而忽略了网络结构,或者只能与同质网络集成。它们都不能很好地处理异构信息网络。本文提出了一种新的有偏传播主题模型(TMBP)算法,将异构信息网络与主题建模统一起来。其内在的直觉是,对多类型对象的处理应该与其固有的文本信息和异构信息网络丰富的语义相区别。在这样一个异构网络上进行简单而无偏见的主题传播没有多大意义。因此,针对TMBP算法,我们从不同的角度研究和开发了两种有偏传播框架:有偏随机游动框架和有偏正则化框架,可以同时发现潜在主题和识别多类型对象簇。我们对所提出的方法进行了广泛的评估,并在几个数据集上与最新技术进行了比较。实验结果表明,该方法的改进是一致的,是有希望的。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: