That is to say, when n>2, neither x , y , z satisfying the Pythagorean integer group x2 + y2 = z2 nor x , y , z satisfying xn - 2 + yn - 2 = zn - 2 are satisfied xn + yn = x , y , z in Zn.
That is, when n > 2, neither x, y, Z satisfying the Pythagorean integer group x2 + y2 = Z2 nor x, y, Z satisfying xn – 2 + yn – 2 = Zn – 2 can satisfy x, y, Z in xn + yn = Zn.
That is to say, when n > 2, neither x, y ,z satisfying the Pythagorean integer group x2+y2 = z2 nor x, y ,z satisfying XN–2+YN–2 = Zn–2 can satisfy the x, y, z in xn+yn =Zn.