Review of Water Quality Control in RASRAS are complex aquatic production systems that involve a range of physical, chemical and biological interactions (Timmons and Ebeling 2010). Understanding these interactions and the relationships between the fish in the system and the equipment used is crucial to predict any changes in water quality and system performance. There are more than 40 water quality parameters than can be used to determine water quality in aquaculture (Timmons and Ebeling 2010). Of these, only a few (as described in Sects. 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.2.6 and 3.2.7) are traditionally controlled in the main recirculation processes, given that these pro- cesses can rapidly affect fish survival and are prone to change with the addition of feed to the system. Many other water quality parameters are not normally monitored or controlled because (1) water quality analytics may be expensive, (2) the pollutant to be analysed can be diluted with daily water exchange, (3) potential water sources containing them are ruled out for use or (4) because their potential negative effects have not been observed in practice. Therefore, the following water quality param- eters are normally monitored in RAS.Dissolved Oxygen (DO)Dissolved oxygen (DO) is generally the most important water quality parameter in intensive aquatic systems, as low DO levels may quickly result in high stress in fish, nitrifying biofilter malfunction and indeed significant fish losses. Commonly, stock- ing densities, feed addition, temperature and the tolerance of the fish species to hypoxia will determine the oxygen requirements of a system. As oxygen can be transferred to water in concentrations higher than its saturation concentration under atmospheric conditions (this is called supersaturation), a range of devices and designs exist to ensure that the fish are provided with sufficient oxygen.In RAS, DO can be controlled via aeration, addition of pure oxygen, or a combination of these. Since aeration is only capable of raising the DO concentrations to the atmospheric saturation point, the technique is generally reserved for lightly loaded systems or systems with tolerant species such as tilapia or catfish. However, aerators are also an important component of commercial RAS where the use of expensive technical oxygen is reduced by aerating water with a low dissolved oxygen content back to the saturation point before supersaturating the water with technical oxygen.There are several types of aerators and oxygenators that can be used in RAS and these fall within two broad categories: gas-to-liquid and liquid-to-gas systems (Lekang 2013). Gas-to-liquid aerators mostly comprise diffused aeration systems where gas (air or oxygen) is transferred to the water, creating bubbles which exchange gases with the liquid medium (Fig. 3.2). Other gas-to-liquid systems include passing gases through diffusers, perforated pipes or perforated plates tocreate bubbles using Venturi injectors which create masses of small bubbles or devices which trap gas bubbles in the water stream such as the Speece Cone and the U-tube oxygenator.Liquid-to-gas aerators are based on diffusing the water into small droplets to increase the surface area available for contact with the air, or creating an atmosphere enriched with a mixture of gases (Fig. 3.3). The packed column aerator (Colt and Bouck 1984) and the low-head oxygenators (LHOs) (Wagner et al. 1995) are examples of liquid-to-gas systems used in recirculating aquaculture. However, other liquid-to-gas systems popular in ponds and outdoor farms such as paddlewheel aerators (Fast et al. 1999) are also used in RAS.Considerable literature is available on gas exchange theory and the fundamentals of gas transfer in water, and the reader is encouraged not only to consult aquaculture and aquaculture engineering texts, but also to refer to process engineering and wastewater treatment materials for a better understanding of these processes.