Fig. 3(d, e) show the dielectric properties of cold sintered samples o的简体中文翻译

Fig. 3(d, e) show the dielectric pr

Fig. 3(d, e) show the dielectric properties of cold sintered samples over the temperature range between - 50 and 200 °C. Typical samples obtained at 150 °C for 15 h (Fig. 3(d)) and 225 °C for 1h (Fig. 3(e)) exhibit broad curves with a maximum permittivity at 125 °C, indicating ferroelectric to paraelectric transition. The sample obtained at 225 °C shows a slightly higher room temperature relative permittivity (ɛ’ = 1440 at 1MHz) than the one obtained at 150 °C (ɛ’ = 1330 at 1MHz). These values are lower than the value of the conventional BaTiO3 with coarse grains, but comparable with the values expected in nanocrystalline BaTiO3, which could be explained by size effect [36]. Indeed, it is well known that the dielectric properties of BaTiO3 are associated with its microstructure, especially grain sizes. Typically for BaTiO3, the peak of relative permittivity appears around grain sizes of 0.8 – 1 μm size range and decreases with decreasing grain sizes [25]. In addition, small grain sizes lead to a lower shift of the Curie temperature, especially below 100 nm [36]. The broadening of the curves (Fig. 3(d,e)) may be influenced by the broad grain size distribution in the cold sintered samples and the fact that several grains are within the size range highly influencing the shift in Curie temperature. In the paraelectric region, the relative permittivity of cold sintered samples follows the Curie-Weiss law (Fig. S3). The Curie constant (C) and the Curie-Weiss temperature (θc), estimated by the linear section of the inverse ɛ’ plots, are 1.9×105 and 74 °C for the sample sintered at 150 °C and 1.5×105 and 97 °C for the sample sintered at 225 °C, which are in good agreement with the trends reported by Frey et al. with nano hot pressed BaTiO3 [37]. The comparison of relative permittivity and Curie-Weiss temperature, depending on the size and sintering method, and these concepts are described elsewhere [25]. On the other hand, both samples exhibit slightly higher dielectric losses (tanδ ≈ 9 %) than the one reported for NaOH-KOH eutectic fluxes (tanδ ≈ 4 %) [25]. Such a difference in dielectric loss would be due to the previously discussed residual fluxes in the cold sintered BaTiO3.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
Fig. 3(d, e) show the dielectric properties of cold sintered samples over the temperature range between - 50 and 200 °C. Typical samples obtained at 150 °C for 15 h (Fig. 3(d)) and 225 °C for 1h (Fig. 3(e)) exhibit broad curves with a maximum permittivity at 125 °C, indicating ferroelectric to paraelectric transition. The sample obtained at 225 °C shows a slightly higher room temperature relative permittivity (ɛ’ = 1440 at 1MHz) than the one obtained at 150 °C (ɛ’ = 1330 at 1MHz). These values are lower than the value of the conventional BaTiO3 with coarse grains, but comparable with the values expected in nanocrystalline BaTiO3, which could be explained by size effect [36]. Indeed, it is well known that the dielectric properties of BaTiO3 are associated with its microstructure, especially grain sizes. Typically for BaTiO3, the peak of relative permittivity appears around grain sizes of 0.8 – 1 μm size range and decreases with decreasing grain sizes [25]. In addition, small grain sizes lead to a lower shift of the Curie temperature, especially below 100 nm [36]. The broadening of the curves (Fig. 3(d,e)) may be influenced by the broad grain size distribution in the cold sintered samples and the fact that several grains are within the size range highly influencing the shift in Curie temperature. In the paraelectric region, the relative permittivity of cold sintered samples follows the Curie-Weiss law (Fig. S3). The Curie constant (C) and the Curie-Weiss temperature (θc), estimated by the linear section of the inverse ɛ’ plots, are 1.9×105 and 74 °C for the sample sintered at 150 °C and 1.5×105 and 97 °C for the sample sintered at 225 °C, which are in good agreement with the trends reported by Frey et al. with nano hot pressed BaTiO3 [37]. The comparison of relative permittivity and Curie-Weiss temperature, depending on the size and sintering method, and these concepts are described elsewhere [25]. On the other hand, both samples exhibit slightly higher dielectric losses (tanδ ≈ 9 %) than the one reported for NaOH-KOH eutectic fluxes (tanδ ≈ 4 %) [25]. Such a difference in dielectric loss would be due to the previously discussed residual fluxes in the cold sintered BaTiO3.
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
图3(d,e)显示了冷烧样品在 -50°C 至 200 °C 之间的温度范围内的介电特性。在 150 °C 获得的典型样品为 15 小时(图 3(d)))和 225°C 为 1 小时(图 3(e)))显示宽曲线,最大允许率在 125 °C,指示铁电到副电过渡。在 225 °C 下获得的样本显示室温相对允许性(ɛ' = 1MHz 时为 1440),高于在 1MHz 时获得的室温相对允许性(ɛ' = 1330)。这些值低于粗粒的传统 BaTiO3 的值,但与纳米晶体 BaTiO3 中的预期值相当,这可以通过大小效应 [36] 来解释。事实上,众所周知,BaTiO3的介电特性与其微观结构有关,尤其是颗粒尺寸。通常对于 BaTiO3,相对允许度的峰值出现在 0.8 × 1 μm 大小范围的颗粒大小周围,随着粒粒尺寸减小而减小 [25]。此外,小颗粒尺寸导致居里温度的降位降低,尤其是低于 100 nm [36]。曲线的扩大(图3(d,e))可能受到冷烧结样品中粗粒尺寸分布的影响,以及若干颗粒在大小范围内,对居里温度的移位影响很大。在副电区,冷烧结样品的相对允许性遵循居里-魏斯定律(图.S3)。居里常数 (C) 和居里-韦斯温度 (μc),由反向""图"的线性ɛ估计, 在150°C下烧结样品为1.9×105和74°C,在225°C下烧结样品为1.9°105和74°C,与Frey等人用纳米热压BaTiO3[37]报告的趋势非常一致。相对允许性和居里-魏斯温度的比较,取决于大小和烧结方法,这些概念在其他地方描述[25]。另一方面,两个样品的介电损耗略高(tan = 9%)比 Naoh - koh eutectic 通量报告 (tan = 4%)[25]. 介电损耗的这种差异是由于先前讨论的冷烧结BaTiO3中的残余通量造成的。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
图3(d,e)显示了冷烧结样品在-50到200°C之间的介电性能。在150°C下15小时(图3(d))和225°C下1h(图3(e))获得的典型样品呈现宽曲线,在125°C下具有最大介电常数,表明铁电-顺电转变。在225°C下获得的样品显示出比在150°C下获得的样品在室温下的相对介电常数(在1MHz时ɛ’=1440)略高(在1MHz下,ɛ’=1330)。这些值低于传统的粗晶BaTiO3的值,但与纳米晶BaTiO3的预期值相当,这可以用尺寸效应来解释[36]。事实上,众所周知,钛酸钡的介电性能与其微观结构,尤其是晶粒尺寸有关。通常对于BaTiO3,相对介电常数峰值出现在0.8–1μm粒径范围内,并且随着晶粒尺寸的减小而减小[25]。此外,较小的晶粒尺寸会导致居里温度的较低偏移,尤其是在100nm以下[36]。曲线的加宽(图3(d,e))可能受到冷烧结样品中广泛的晶粒尺寸分布以及几个晶粒在尺寸范围内这一事实对居里温度的变化有很大的影响。在顺电区,冷烧结样品的相对介电常数遵循居里-维斯定律(图S3)。由反ɛ'曲线的线性截面估计的居里常数(C)和居里-韦斯温度(θC)分别为1.9×105和74°C,而在225°C下烧结的样品的居里常数(C)和居里-韦斯温度(θC)与Frey等人报道的趋势一致。纳米热压钛酸钡[37]。相对介电常数和居里-韦斯温度的比较,取决于尺寸和烧结方法,这些概念在别处描述[25]。另一方面,两个样品的介电损耗(tanδ≈9%)都比NaOH-KOH共晶熔剂的介电损耗(tanδ≈4%)略高[25]。这种介电损耗的差异可能是由于先前讨论的冷烧结BaTiO3中的残余通量造成的。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: