In comparison to reference formulation, the geometric mean exposures in plasma (AUC0-t ) exhibited 2.35 and 3.26-fold increases when artemisinin was loaded in nanoreservoir and nanosphere systems, respectively. Its plasma half-life increased 4.00 and 6.25-fold and its clearance decreased up to 2.5 and 4.72-fold. Artemisinin was successfully adminis-tered intravenously by means of surface-decorated amphiphilic γ-cyclodextrin nanostructures and showed a longer elimination half-life with respect to an artemisinin solution in ethanol. Therefore, these systems are likely to provide significant advantages for the intravenous treatment of severe malaria.