4.3. WettabilityFig. 8 shows the contact angle of the water drop on th的简体中文翻译

4.3. WettabilityFig. 8 shows the co

4.3. WettabilityFig. 8 shows the contact angle of the water drop on the samplesurface is related to the three interfacial energies gSG (solid/gas), gSL(solid/liquid) and gLG (liquid/gas) which are in equilibriumfollowing the Young's equation The main parameters that affect the magnitude of the contactangle are the temperature, roughness, the chemical compositionand microstructure of the material surface. All samples weremeasured at 25 C and the roughness was Ra ¼ 0.038 ± 0.02 mm.Thus, as the temperature and surface roughness are the same for allthe samples, the contact angle can be correlated with the chemicalcomposition and microstructure characteristics. In Fig. 6 it isobserved a decrease in the contact angle as the a-Al grain sizedecreases (grain boundary area increases). As the grain boundarieshave high atomic disorder, they have higher surface energy thanthe ordered crystal structure. Then, it is reasonable that the surfaceenergy of an isotropic material increases when the grain size decreases, which leads to improve the wettability decreasing thecontact angle due to an increase in the interfacial energy.All meltspun samples showed a higher contact angle on the WS than onthe GS of the corresponding sample. This effect can be related withthe higher level of the a-Al crystallographic texture developed onthe WS during the solidification process. Moreover, the highercontact angle obtained for the 201-SR7 sample respect to the 201-SR1.5 can be also related with the higher crystallographic texture inthe SR7 sample than in the SR1.5. The change in the chemicalcomposition by the addition of 0.5 wt%Mn (20105 samples) appearsto compensate the effect of the crystallographic texture, whichleads to preserving a slight decreasing of the contact angle with thedecreasing of the a-Al grain size (Fig. 6).
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
4.3。润湿性<br>图8显示了水滴在样品<br>表面上的接触角与三个界面能gSG(固体/气体),gSL <br>(固体/液体)和gLG(液体/气体)有关,它们在<br>杨氏定律后处于平衡状态。方程<br>影响接触<br>角大小的主要参数是<br>材料表面的温度,粗糙度,化学成分和微观结构。所有样品均<br>在25°C下测量,粗糙度为Ra¼0.038±0.02 mm。<br>因此,由于所有<br>样品的温度和表面粗糙度均相同,因此接触角可与化学<br>成分和微观结构特征相关。在图6中是<br>观察到接触角随着a-Al晶粒尺寸的<br>减小(晶界面积增加)而减小。由于晶界<br>具有高原子无序性,因此它们具有比<br>有序晶体结构更高的表面能。然后,合理的是,<br>当晶粒尺寸减小时,各向同性材料的表面能增加,这将导致改善的可湿性,<br>由于界面能的增加而降低了接触角。所有熔喷样品均显示出较高的接触WS上<br>的角度比相应样本的GS上的角度大。此效果可能与凝固过程中在WS<br>上<br>形成的较高水平的a-Al晶体织构有关。而且,更高<br>201-SR7样品相对于201- <br>SR1.5所获得的最大接触角也可能与SR1.5样品中更高的晶体织<br>构有关。<br>通过添加0.5 wt%Mn(20105样品)改变化学成分似乎<br>可以补偿晶体织构的影响,从而<br>导致<br>随着a-Al晶粒尺寸的减小,接触角略有减小(图6)。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
4.3. 可<br>图 8 显示了样品上水滴的接触角<br>表面与三个面间能量 gSG (固体/气体), gSL 相关<br>(固体/液体)和 gLG(液体/气体)处于平衡状态<br>遵循杨的方程<br>影响接触幅度的主要参数<br>角度是温度,粗糙度,化学成分<br>和材料表面的微观结构。所有样品<br>测量温度为 25 C,粗糙度为 Ra 1/4 0.038 ± 0.02 mm。<br>因此,由于温度和表面粗糙度对于所有<br>样品,接触角可与化学<br>组成和微观结构特性。在图6中,它是<br>观察到接触角的减少作为 a-Al 颗粒大小<br>减少(颗粒边界面积增加)。作为颗粒边界<br>有高原子紊乱,他们有更高的表面能量比<br>有序的晶体结构。然后,这是合理的,表面<br>当颗粒尺寸减小时,等向异性物质的能量增加,从而改善可减性。<br>接触角,由于面间能量的增加。所有熔体样品都显示 WS 上的接触角高于<br>相应样本的 GS。此效果可以与<br>在 A-Al 晶体纹理的较高水平上发展<br>凝固过程中的WS。此外,越高<br>为 201-SR7 样品获得的接触角,与 201-<br>SR1.5 也可以与中高晶体纹理相关。<br>SR7 样品比 SR1.5 中的样品。化学的变化<br>成分通过添加0.5 wt%Mn(20105样本)出现<br>以补偿晶体纹理的效果,这<br>导致保持接触角略有减少与<br>减少al颗粒尺寸(图6)。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
4.3. WettabilityFig. 8 shows the contact angle of the water drop on the samplesurface is related to the three interfacial energies gSG (solid/gas), gSL(solid/liquid) and gLG (liquid/gas) which are in equilibriumfollowing the Young's equation The main parameters that affect the magnitude of the contactangle are the temperature, roughness, the chemical compositionand microstructure of the material surface. All samples weremeasured at 25 C and the roughness was Ra ¼ 0.038 ± 0.02 mm.Thus, as the temperature and surface roughness are the same for allthe samples, the contact angle can be correlated with the chemicalcomposition and microstructure characteristics. In Fig. 6 it isobserved a decrease in the contact angle as the a-Al grain sizedecreases (grain boundary area increases). As the grain boundarieshave high atomic disorder, they have higher surface energy thanthe ordered crystal structure. Then, it is reasonable that the surfaceenergy of an isotropic material increases when the grain size decreases, which leads to improve the wettability decreasing thecontact angle due to an increase in the interfacial energy.All meltspun samples showed a higher contact angle on the WS than onthe GS of the corresponding sample. This effect can be related withthe higher level of the a-Al crystallographic texture developed onthe WS during the solidification process. Moreover, the highercontact angle obtained for the 201-SR7 sample respect to the 201-SR1.5 can be also related with the higher crystallographic texture inthe SR7 sample than in the SR1.5. The change in the chemicalcomposition by the addition of 0.5 wt%Mn (20105 samples) appearsto compensate the effect of the crystallographic texture, whichleads to preserving a slight decreasing of the contact angle with thedecreasing of the a-Al grain size (Fig. 6).<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: