Next, we consider four kinds of rolling bearing data under the same ro的简体中文翻译

Next, we consider four kinds of rol

Next, we consider four kinds of rolling bearing data under the same rotor speed 1730 r/min and load 3 HP but different fault locations with pitting size 0.1778 mm. The data includes vibration signals of normal bearings and bearings with outer race fault, inner race fault and ball element fault (i.e. Norm4, IR1, BE and OR) and their time domain waveforms are given in Fig. 9, from which it is difficult to differ them from each other. Then CMFE is employed to analyze these four kinds of rolling bearing vibration signals. Three samples of each kind are used and thus CMFEs of totally twelve sample signals are calculated and shown in Fig. 11, from which the following results can be concluded. First of all, the CMFEs of vibration signals from normal rolling bearing in most scale factor are larger than those of faulty rolling bearings. And they change smoothly and fluctuate around a constant with the increase of scale factor while the CMFEs of vibration signal of three fault rolling bearings have an apparently decreasing. This can be explained that the vibration is random when the rolling bearing works on a healthy condition. However, this randomness is like the 1/f noise's (by observing their CMFEs) other than white noise's, which means that it still contains much important information of mechanical systems. Once the rolling bearing works with fault, the failure position will become a drive source to continuously generating a regular and periodic impact. Therefore, the obtained vibration signals have an evident regularity and increasing selfsimilarity, which results in an decreasing complexity and thus an increasing FuzzyEns. Therefore, CMFE is very suitable for rolling bearing fault detection and diagnosis and is an effective tool for machinery fault diagnosis and condition monitoring. In addition, at most scale factors, the CMFE of vibration signal collected from rolling bearing with ball element fault is larger than that of rolling bearing with inner race fault, which is larger than that of rolling bearing with outer race fault. This is mainly because when a failure occurs, the vibration signal of system has obvious impact characteristics and different fault locations have different impact frequencies and therefore faults in different locations result in vibration signals with different complexities. Since the outer race of rolling bearing is fixed on the bearing housing and when the failure occurs in outer race, the impact characteristic frequency of vibration signal is single and simple. Besides, compared with the inner race and ball element fault, the characteristic frequency of outer race fault is the smallest and hence its self-similarity and regularity also is the most obvious, which results in its CMFE curve of vibration signal drops fastest with the increase of scale factor. Since inner race rotates with the rotation axis and rolling element revolves round the shaft and on its own axis, the fault characteristic frequency of ball element is larger than that of inner race (and outer race), hence, in theory the vibration signals of rolling element with ball element fault is more complex than those of inner race and outer race. This is why the CMFE of vibration signal of roller bearing with ball element fault in most scales is greater than those of inner race and outer race. Third, CMFE in a single scale can not effectively distinguish fault category. When the scale factor equals to 1, the CMFE of original vibration signal will degenerate into FuzzyEn. It can be seen from the Fig. 10 that the FuzzyEn of vibration signal from normal rolling bearing is smaller than those of vibration signals from faulty rolling bearings, from which it is easy to come a preposterous result that the vibration signal of faulty rolling bearings is much more complex than that of normal rolling bearing. Therefore, compared with the traditional single scale based fuzzy entropy analysis, CMFE can reflect the failure nature better. To sum up, the above analysis indicates that CMFE is an effective tool for rolling bearing fault detection and diagnosis.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
下一步,我们考虑四种相同的转子速度1730转/分下滚动轴承数据和负载3 HP但二FF erent伴凹陷尺寸0.1778毫米故障位置。该数据包括的正常轴承的振动信号和轴承外圈故障,内环故障和球元件故障(即Norm4,IR1,BE和OR)和它们的时域波形示于图3。9,从它是二FFI崇拜到相互迪FF呃他们。然后CMFE被用来分析这四种滚动轴承振动信号。各种三个样品使用,因此完全12采样信号的CMFEs被计算并示于图11,从中以下结果可以得出结论。首先,从在大多数比例因子正常滚动轴承振动信号的CMFEs比的故障滚动轴承大。他们顺利和FL uctuate改变周围的比例因子的增加而不断振动信号的三次故障滚动轴承的CMFEs有一个明显的下降。这可以解释,振动是随机的,当滚动轴承工作在一个健康的状态。然而,这种随机性就像是1 / f噪声的(通过观察他们的CMFEs)以外的白噪声的,这意味着它仍然包含机械系统的重要信息。一旦滚动轴承带故障工作,故障位置将成为驱动源不断产生经常和定期的影响。因此,所获得的振动信号具有一个明显的规律性并增加自相似性,越来越FuzzyEns这导致降低的复杂性且因此。因此,CMFE非常适合于滚动轴承的故障检测和诊断,是对于FF机械故障诊断和状态监测ective工具一封。此外,至多比例因子,从与球元件故障滚动轴承收集振动信号的CMFE比用内环故障,这比与外圈故障滚动轴承的较大的滚动轴承的大。这主要是因为在发生故障时,系统的振动信号具有明显的冲击特性和二FF erent故障位置具有二FF erent冲击频率,因此在二FF erent位置导致与二FF erent复杂振动信号故障。由于滚动轴承的外圈固定成本轴承壳体上,并且当故障在外圈发生时,振动信号的影响的特征频率是单一的,简单。此外,与内座圈和球元件故障相比,外圈故障的特征频率是最小的,因此它的自相似性和规律性也是最明显的,这导致了振动信号的其CMFE曲线的增大而下降最快的比例因子。由于与旋转轴和滚动体公转的轴和在其自己的轴线内圈旋转时,球元件的故障特征频率大于内圈(和外座圈)的直径大,因此,在理论上轧制的振动信号与球元件故障元件比那些内圈和外圈的更加复杂。这就是为什么与球元件故障滚子轴承的振动信号的大多数尺度CMFE是比内座圈和外座圈的直径。第三,CMFE在一个单一的规模无法以电子邮件FF ectively区分故障类别。当比例因子等于1,原振动信号的CMFE退化为FuzzyEn。它可以从图10可以看出,从正常滚动轴承振动信号的FuzzyEn比那些从故障滚动轴承振动信号,从中可以很容易的较小来荒谬结果的故障滚动轴承振动信号是复杂得多高于正常滚动轴承的。因此,与传统的单一尺度基于模糊熵分析比较,CMFE可以重新FL ECT失败自然更好。总结一下,
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
接下来,我们考虑四种滚动轴承数据,在相同的转子速度 1730 r/min 和负载 3 HP,但不同的故障位置与点蚀大小 0.1778 mm。数据包括具有外部种族故障、内圈故障和球体元件故障(即 Norm4、IR1、BE 和 OR)的正常轴承和轴承的振动信号,其时域波形在图 9 中给出,它们很难彼此不同。然后采用CMFE分析这四种滚动轴承振动信号。使用了三个每种样本,从而计算了总共十二个样本信号的CMF,如图11所示,由此可以得出以下结论。首先,在大多数比例因子中,来自正常滚动轴承的振动信号的CMF大于故障滚动轴承的CMF。随着比例因子的增加,它们平稳地变化,在常量波动,而三个故障滚动轴承的振动信号的CMFS有明显下降。这可以解释,当滚动轴承在健康条件下工作时,振动是随机的。然而,这种随机性类似于1/f噪声(通过观察其CMFEs),而不是白噪声,这意味着它仍然包含许多重要的机械系统信息。一旦滚动轴承在发生故障时工作,故障位置将成为持续产生定期碰撞的驱动源。因此,获得的振动信号具有明显的规律性和增加的自我相似性,导致复杂性降低,从而增加模糊。因此,CMFE非常适合滚动轴承故障的检测和诊断,是机械故障诊断和状态监测的有效工具。此外,在大部分比例因子中,从滚装轴承收集的振动信号的CMFE大于带内圈故障的滚动轴承,后者大于带外圈故障的滚动轴承。这主要是因为当发生故障时,系统的振动信号具有明显的冲击特性,不同的故障位置具有不同的冲击频率,因此不同位置的故障会产生不同复杂程度的振动信号。由于滚动轴承的外缘固定在轴承壳体上,当外部争用失败时,振动信号的冲击特性频率是单的、简单的。此外,与内场和球位断层相比,外场断层的特征频率最小,其自相似性和规律性也最为明显,其CMFE曲线的振动信号随尺度因子的增加而下降最快。由于内圈与旋转轴一起旋转,滚动元件围绕轴旋转,在自身轴上旋转,球元件的断层特征频率大于内圈(和外圈),因此,从理论上讲,带有球元件故障的滚动元件的振动信号比内圈和外圈的振动信号更为复杂。这就是为什么在大多数尺度上,具有球件故障的滚子轴承振动信号的CMFE大于内圈和外圈的CMFE。第三,CMFE在单一尺度上不能有效地区分故障类别。当比例因子等于1时,原始振动信号的CMFE将退化为模糊。从图10可以看出,正常滚动轴承振动信号的模糊小于故障滚动轴承的振动信号,因此很容易得出一个荒谬的结果,即故障滚动轴承的振动信号比普通滚动轴承的振动信号复杂得多。因此,与传统的基于单尺度的模糊熵分析相比,CMFE可以更好地反映失效性质。综上所述,以上分析表明,CMFE是滚动轴承故障检测与诊断的有效工具。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
接下来,我们考虑了在相同转速1730r/min和负载3hp下的四种滚动轴承数据,但不同故障位置的点蚀尺寸为0.1778mm。这些数据包括正常轴承和有外圈故障、内圈故障和滚珠元件故障(即Norm4、IR1、BE和或)的轴承的振动信号,其时域波形如图9所示,从中很难区分它们。然后利用CMFE对这四种滚动轴承振动信号进行了分析。使用每种类型的三个样本,从而计算总共十二个样本信号的CMFEs,如图11所示,由此可以得出以下结果。首先,一般滚动轴承的振动信号在大多数尺度因子下的CMFEs都大于故障滚动轴承的CMFEs。三种故障滚动轴承振动信号的CMFEs均明显降低,且随着标度因数的增加,它们变化平稳,并在一个常数附近波动。这可以解释当滚动轴承工作在健康状态时,振动是随机的。然而,这种随机性与1/f噪声(通过观察它们的CMFEs)相似,而不是白噪声,这意味着它仍然包含许多机械系统的重要信息。一旦滚动轴承发生故障,故障部位将成为连续产生规律性和周期性冲击的驱动源。因此,所获得的振动信号具有明显的规律性和自相似性的增加,从而导致复杂性的降低,从而增加了模糊性。因此,CMFE非常适合于滚动轴承的故障检测和诊断,是机械故障诊断和状态监测的有效工具。除此之外,在大多数尺度因子下,滚珠轴承故障时振动信号的CMFE大于内圈轴承故障时的CMFE,大于外圈轴承故障时的CMFE。这主要是因为当故障发生时,系统的振动信号具有明显的冲击特性,并且故障位置具有不同的冲击频率,因此在不同位置的故障会导致振动信号具有二次复杂度。由于滚动轴承外圈固定在轴承座上,当外圈发生故障时,振动信号的冲击特征频率单一而简单。此外,与内圈和球元件故障相比,外圈故障的特征频率最小,自相似性和规律性也最明显,导致其振动信号的CMFE曲线随尺度因子的增大而下降最快。由于内圈随转动轴转动,滚动元件绕轴转动,且在其自身轴线上,球元件的故障特征频率大于内圈(外圈),因此,理论上,滚珠元件故障的振动信号比内圈和外圈的振动信号要复杂得多。比赛。这就是为什么在大多数尺度上,滚珠轴承故障振动信号的CMFE都大于内圈和外圈的CMFE。第三,单一尺度的CMFE不能有效区分断层类型。当尺度因子为1时,原始振动信号的CMFE将退化为FuzzyEn。由图10可以看出,正常滚动轴承振动信号的模糊性比故障滚动轴承振动信号的模糊性小,由此很容易得出故障滚动轴承振动信号比正常滚动轴承振动信号复杂得多的荒谬结论。因此,与传统的单尺度模糊熵分析相比,CMFE能更好地反映失效性质。综上所述,以上分析表明CMFE是滚动轴承故障检测和诊断的有效工具。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: