Highly thermally conductive, electrically insulating, and flexible nanocellulose composite films are crucially significant for the thermal management of next-generation green electronics. However, the intrinsic hygroscopicity of nanocellulose poses a daunting challenge to the reliability and structural stability of electronic products. To address these issues, herein, a dual bio-inspired design was innovatively introduced to fabricate highly thermally conductive and superhydrophobic nanocellulose-based composite films via vacuum-assisted self-assembly of cellulose nanofibers (CNFs) and hydroxylated boron nitride nanosheets (OH-BNNS) and subsequent hydrophobic modification. Driven by the highly orderly hierarchical architecture and a strong hydrogen bonding interaction, the laminated CNF-based composite films with 50 wt % OH-BNNS show a high in-plane thermal conductivity (15.13 W/mK), which results in a 505% enhancement compared with the pure CNF films.
Highly thermally conductive, electrically insulating, and flexible nanocellulose composite films are crucially significant for the thermal management of next-generation green electronics. However, the intrinsic hygroscopicity of nanocellulose poses a daunting challenge to the reliability and structural stability of electronic products. To address these issues, herein, a dual bio-inspired design was innovatively introduced to fabricate highly thermally conductive and superhydrophobic nanocellulose-based composite films via vacuum-assisted self-assembly of cellulose nanofibers (CNFs) and hydroxylated boron nitride nanosheets (OH-BNNS) and subsequent hydrophobic modification. Driven by the highly orderly hierarchical architecture and a strong hydrogen bonding interaction, the laminated CNF-based composite films with 50 wt % OH-BNNS show a high in-plane thermal conductivity (15.13 W/mK), which results in a 505% enhancement compared with the pure CNF films.
正在翻译中..