(a) the surface of a cylinder offinite height, excluding the two circles at the ends; (b) the one-sheeted hyperboloid given by the equation x2 + y2 -Z2 = 1; (c) the open annulus in the complex plane specified by 1 < I z I < 3; (d) the sphere with the points at the north and south poles removed. We propose to give a specific homeomorphism (i.e., a continuous, one-one, and onto function which has continuous inverse) from space (b) to space (c). It is most convenient to specify the points of(b) by cylindrical polar coordinates (r, e, z) and to use plane polar coordinates (r, e) for space (c). When e = 0 in (b) we obtain a branch of the hyperbola x2 -Z2 = 1, and we plan to send this nicely onto the corresponding piece ofthe annulus, i.e., the ray {(x,y) 11 < x< 3, y =: O}. If we can do a similar trick for each value of e, in a continuous manner as evaries from 0 to 2n, we shall have the required homeomorphism. Define f:(-oo, (0)~(1,3) by f(x) = x/(1 + lxi) + 2; thenfis a bijection, is con-
(a) 无限高圆柱的表面,不包括端部的两个圆;(b) 由方程 x2 + y2 -Z2 = 1 给出的单页双曲面;(c) 由 1 < I z I < 3 指定的复平面中的开环;(d) 去除了北极和南极点的球体。我们建议从空间(b) 到空间(c) 给出一个特定的同胚(即,一个连续的、一对一的和具有连续逆的上函数)。用圆柱极坐标(r, e, z) 来指定(b) 的点和用平面极坐标(r, e) 来表示空间(c) 是最方便的。当 (b) 中的 e = 0 时,我们得到双曲线 x2 -Z2 = 1 的一个分支,并且我们计划将其很好地发送到环的相应部分,即射线 {(x,y) 11 < x< 3 , y =: O}。如果我们可以对 e 的每个值做一个类似的技巧,以从 0 到 2n 的连续方式,我们将具有所需的同胚。由 f(x) = x/(1 + lxi) + 2 定义 f:(-oo, (0)~(1,3);然后是双射,是 con-
正在翻译中..