Sampling Distributions: Relative to a performance measure, a process will produce output that can be described by a process distribution, with a mean and variance that will be known only with a complete inspection with 100 percent accuracy. The purpose of sampling, however, is to estimate a variable or attribute measure for the output of the process without doing a complete inspection. That measure is then used to assess the performance of the process itself. For example, the time required to process specimens at an intensive care unit lab in a hospital (a variable measure) will vary. If you measured the time to complete an analysis of a large number of patients and plotted the results, the data would tend to form a pattern that can be described as a process distribution. With sampling, we try to estimate the parameters of the process distribution using statistics such as the sample mean and the sample range or standard deviation.1. The sample mean is the sum of the observations divided by the total number of observations: