To achieve effective RTP, two prerequisites shouldprimarily be conside的简体中文翻译

To achieve effective RTP, two prere

To achieve effective RTP, two prerequisites shouldprimarily be considered: one is to obtain efficient spin-orbitcoupling for effectively populating triplet excitons throughfacilitating intersystem crossing (ISC) process, and this can begenerally realized by introducing transition metals, halogens,deuterated carbon, and aromatic carbonyl groups;[1, 15,18–20] theother is to stabilize excited triplet species, thus suppressingnon-radiative transitions. Such stabilized excited tripletspecies can usually be obtained by crystallization or embed￾ding luminogens in appropriate matrices and is assisted byforming hydrogen bonds to restrict their vibration androtation.[2, 11,13–16, 21]Carbon dots (CDs), a newly emerged luminescent nano￾material, have received widespread interest and have beensuccessfully employed in many fields of research thanks totheir superior optical properties, excellent biocompatibility,and cost-effective preparation.[22–25] Specifically, the RTP anddelayed fluorescence (FL) properties of CDs have beendiscovered recently, but are only observable by embedding orimmobilizing in certain matrices (e.g., poly(vinyl alcohol)(PVA), polyurethane, urea/biuret, or zeolites).[26–33] Inspiredby these findings and the general requirements for producingeffective RTP, we propose that it might be possible to prepareRTP CDs directly if the following conditions are compliedwith: 1) CDs should be mostly amorphous polymer-likestructures which hopefully will behave as matrices to embedand immobilize luminogens; 2) the interior of CDs shouldcontain functional groups that could form hydrogen bonds,for further stabilization of excited triplet species; and3) elements that favoring n!p* transitions (e.g., N, P, andhalogens) should be doped in CDs, to facilitate the ISCprocess and consequently to effectively populate tripletexcitons.[15, 19, 34]According to these considerations, we have found a one￾pot method for the facile and quick preparation of ultralongRTP (URTP) CDs. As shown in Figure 1 a, b, gram-scaleURTP CDs can be obtained in a few minutes via microwave￾assisted heating of an ethanolamine and phosphoric acidaqueous solution, and subsequent dialysis purification andfreeze-drying (more details in Supporting Information). Thepurified CDs are a pale yellow powder and emit weak blue FLunder UV (365 nm) lamp irradiation. Importantly, the CDspresent the longest RTP lifetime to be 1.46 s (more than 10 sto naked eye, Figure 1 c and Video 1 in Supporting Informa￾tion) among the reported CDs-based materials to date.[26–32]Note that the as-developed method features facile, quick andscalable merits, the obtained product possesses URTP life-time and could potentially be employed as securityink in anti-counterfeiting and information protection.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
为了实现有效的RTP,首先应<br>考虑两个先决条件:一个是<br>通过<br>促进系统间交叉(ISC)过程获得有效的自旋轨道偶合,以有效地填充三重态激子,这<br>通常可以通过引入过渡金属,卤素,<br>氘代碳来实现。 ,和芳族羰基;<br>[1,15,18–20]<br>另一个是稳​​定三重激发态,从而抑制<br>非辐射跃迁。这种稳定的激发三重态<br>物种通常可以通过将发光剂结晶或嵌入适当的基质中来获得,并通过<br>形成氢键来限制其振动和<br>旋转而得到辅助。[2,11,13–16,21]<br>碳点(CDs)是一种新兴的发光纳米材料,<br>由于<br>其优异的光学性能,出色的生物相容性<br>和高性价比的制备方法,受到了广泛的关注,并已成功应用于许多研究领域。[22-25] ]具体来说,<br>CD的RTP和延迟荧光(FL)特性是<br>最近发现的,但是只能通过嵌入或<br>固定在某些基质(例如聚乙烯醇<br>(PVA),聚氨酯,尿素/缩二脲或沸石)中才能观察到)。[26-33]受<br>这些发现和产生<br>有效RTP的一般要求的启发,我们建议,<br>如果满足以下条件,则有可能直接制备RTP CD<br>具有:1)CD应该主要是非晶态的类聚合物<br>结构,希望能像基质一样嵌入<br>和固定发光剂;2)CD的内部应<br>包含可以形成氢键的官能团,<br>以进一步稳定激发的三重态物质;和<br>3)元素利于N!P *跃迁(例如,N,P,和<br>卤素)应的CD被掺杂,以促进ISC<br>过程,并因此有效地填入三重<br>态激子。<br>[ <br>15,19,34 ]根据这些考虑,我们找到了一种简便的方法来制备超长<br>RTP(URTP)CD。如图1 a,b所示,克刻度<br>URTP CD可以在几分钟内通过微波辅助加热乙醇胺和磷酸<br>水溶液,然后进行透析纯化和<br>冷冻干燥(在支持信息中有更多详细信息)。所述<br>纯化的CD是一个浅黄色粉末和发射蓝光FL弱<br>UV(365 nm)的灯照射下。重要的是,<br>迄今为止,在以CD为基础的CD资料中,CD的RTP寿命最长,为1.46 s(<br>肉眼超过10 s ,图1c和支持信息中的视频1)。<br>[26–32]<br>请注意,所开发的方法具有简便,快速和<br>可扩展的优点,所获得的产品具有URTP寿命,并且有可能被用作安全性<br>油墨用于防伪和信息保护。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
为了实现有效的 RTP,有两个先决条件应<br>主要考虑:一是获得高效的自旋轨道<br>耦合,通过<br>促进系统间交叉 (ISC) 过程,这可以是<br>一般通过引入过渡金属、卤素、<br>去氧化碳和芳香碳基组;<br>[1, 15,18[20]<br>另一种是稳定兴奋的三胞胎物种,从而抑制<br>非辐射过渡。这样的稳定兴奋三胞胎<br>物种通常可以通过结晶或在适当的基质中嵌入发光原获得,并由<br>形成氢键,以限制其振动和<br>旋转。[2, 11,13–16, 21]<br>碳点(CD),一种新兴的发光纳米材料,已受到广泛关注,并一直<br>成功地应用于许多研究领域,这要归功于<br>其优越的光学性能,优异的生物相容性,<br>和具有成本效益的准备。[22–25]具体来说,RTP 和<br>CD 的延迟荧光 (FL) 属性已<br>最近发现,但只能通过嵌入或<br>在某些基质中固定(例如,聚(乙烯基酒精)<br>(PVA)、聚氨酯、尿素/聚氨酯或沸石)。[26–33]启发<br>由这些发现和生产一般要求<br>有效的RTP,我们建议,它是可能的准备<br>如果符合以下条件,RTP CD 直接<br>与: 1) CD 应大多是无定形聚合物一样<br>结构,希望将表现为矩阵嵌入<br>和固定发光体;2) CD 的内部应<br>包含可能形成氢键的功能组,<br>进一步稳定兴奋的三胞胎物种;和<br>3) 有利于 n!p* 转换的元素(例如,N、P 和<br>卤素)应在光盘中掺杂,以方便 ISC<br>过程,从而有效地填充三胞胎<br>兴奋。<br>[15, 19, 34]<br>根据这些考虑,我们找到了一个单点方法,方便和快速准备超长<br>RTP (URTP) CD。如图 1 a、b、克刻度所示<br>URTP CD 可在几分钟内通过乙醇胺和磷酸的微波加热获得<br>水溶液,以及随后的透析纯化和<br>冷冻干燥(支持信息中的更多详细信息)。的<br>纯化 CD 是淡黄色粉末,可发出弱蓝色 FL<br>在紫外线 (365 nm) 灯照射下。重要的是,CD<br>提供最长的 RTP 寿命为 1.46 s(超过 10 s<br>肉眼,图1c和视频1在支持信息)之间报告的基于CD的材料至今。<br>[26–32]<br>请注意,开发后的方法具有简单、快速和<br>可扩展的优点,获得的产品具有 URTP 使用寿命,并可能用作安全性<br>防伪和信息保护中的油墨。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
To achieve effective RTP, two prerequisites shouldprimarily be considered: one is to obtain efficient spin-orbitcoupling for effectively populating triplet excitons throughfacilitating intersystem crossing (ISC) process, and this can begenerally realized by introducing transition metals, halogens,deuterated carbon, and aromatic carbonyl groups;[1, 15,18–20] theother is to stabilize excited triplet species, thus suppressingnon-radiative transitions. Such stabilized excited tripletspecies can usually be obtained by crystallization or embed￾ding luminogens in appropriate matrices and is assisted byforming hydrogen bonds to restrict their vibration androtation.[2, 11,13–16, 21]Carbon dots (CDs), a newly emerged luminescent nano￾material, have received widespread interest and have beensuccessfully employed in many fields of research thanks totheir superior optical properties, excellent biocompatibility,and cost-effective preparation.[22–25] Specifically, the RTP anddelayed fluorescence (FL) properties of CDs have beendiscovered recently, but are only observable by embedding orimmobilizing in certain matrices (e.g., poly(vinyl alcohol)(PVA), polyurethane, urea/biuret, or zeolites).[26–33] Inspiredby these findings and the general requirements for producingeffective RTP, we propose that it might be possible to prepareRTP CDs directly if the following conditions are compliedwith: 1) CDs should be mostly amorphous polymer-likestructures which hopefully will behave as matrices to embedand immobilize luminogens; 2) the interior of CDs shouldcontain functional groups that could form hydrogen bonds,for further stabilization of excited triplet species; and3) elements that favoring n!p* transitions (e.g., N, P, andhalogens) should be doped in CDs, to facilitate the ISCprocess and consequently to effectively populate tripletexcitons.[15, 19, 34]According to these considerations, we have found a one￾pot method for the facile and quick preparation of ultralongRTP (URTP) CDs. As shown in Figure 1 a, b, gram-scaleURTP CDs can be obtained in a few minutes via microwave￾assisted heating of an ethanolamine and phosphoric acidaqueous solution, and subsequent dialysis purification andfreeze-drying (more details in Supporting Information). Thepurified CDs are a pale yellow powder and emit weak blue FLunder UV (365 nm) lamp irradiation. Importantly, the CDspresent the longest RTP lifetime to be 1.46 s (more than 10 sto naked eye, Figure 1 c and Video 1 in Supporting Informa￾tion) among the reported CDs-based materials to date.[26–32]Note that the as-developed method features facile, quick andscalable merits, the obtained product possesses URTP life-time and could potentially be employed as securityink in anti-counterfeiting and information protection.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: