激光熔覆具有能量密度高、对工件热效应小、熔覆层与基体冶金结合、熔覆层组织致密、获得表面性能较好的合金熔覆层等优点。因此,激光熔覆逐渐成为铜及的简体中文翻译

激光熔覆具有能量密度高、对工件热效应小、熔覆层与基体冶金结合、熔覆层组

激光熔覆具有能量密度高、对工件热效应小、熔覆层与基体冶金结合、熔覆层组织致密、获得表面性能较好的合金熔覆层等优点。因此,激光熔覆逐渐成为铜及其合金表面改性的手段之一。尽管激光熔覆在铜表面改性方面取得了一定的成就和经济效益,但仍难以制备出高质量、高性能的功能性熔覆层。主要问题是铜本身的物理和化学性质。(1)对于覆层材料,由于铜与多种材料之间的润湿性差,界面结合强度弱,有必要研究更多的覆层材料体系,优化覆层粉末的组成,以确保覆层与基体实现无缺陷冶金结合。(2)在制备工艺方面,铜对激光有极高的反射率。采用复合表面处理技术可以提高对激光的吸收率。涂层厚度的增加将增加裂纹发生的概率3|。涂层质量无法保证。因此,有必要探索操作灵活、加工成本低的熔覆工艺,进一步优化工艺参数,在保证熔覆层质量的前提下,最大限度地减少激光提供的能量损失。此外,稀土元素和纳米材料的加入可以细化熔覆层的晶粒,有助于减少裂纹。(3)关于镀层的微观结构和性能,目前的研究仅集中在铜表面的力学性能上,而关于镀层对电导率影响的研究较少。激光熔覆技术对铜导电性影响的机理也难以解释清楚。未来,铜的表面改性将向耐磨、耐腐蚀、耐高温、良好的导热性和导电性的综合性能发展。此外,熔覆层的耐磨性、抗腐蚀机理和导电机理还需要进一步研究。
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
激光熔覆具有能量密度高、对工件热效应小、熔覆层与基体冶金结合、熔覆层组织致密、获得表面性能较好的合金熔覆层等优点。因此,激光熔覆逐渐成为铜及其合金表面改性的手段之一。尽管激光熔覆在铜表面改性方面取得了一定的成就和经济效益,但仍难以制备出高质量、高性能的功能性熔覆层。主要问题是铜本身的物理和化学性质。<br>(1)对于覆层材料,由于铜与多种材料之间的润湿性差,界面结合强度弱,有必要研究更多的覆层材料体系,优化覆层粉末的组成,以确保覆层与基体实现无缺陷冶金结合。<br>(2)在制备工艺方面,铜对激光有极高的反射率。采用复合表面处理技术可以提高对激光的吸收率。涂层厚度的增加将增加裂纹发生的概率3|。涂层质量无法保证。因此,有必要探索操作灵活、加工成本低的熔覆工艺,进一步优化工艺参数,在保证熔覆层质量的前提下,最大限度地减少激光提供的能量损失。此外,稀土元素和纳米材料的加入可以细化熔覆层的晶粒,有助于减少裂纹。<br>(3)关于镀层的微观结构和性能,目前的研究仅集中在铜表面的力学性能上,而关于镀层对电导率影响的研究较少。激光熔覆技术对铜导电性影响的机理也难以解释清楚。未来,铜的表面改性将向耐磨、耐腐蚀、耐高温、良好的导热性和导电性的综合性能发展。此外,熔覆层的耐磨性、抗腐蚀机理和导电机理还需要进一步研究。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
激光熔覆具有能量密度高、对工件热效应小、熔覆层与基体冶金结合、熔覆层组织致密、获得表面性能较好的合金熔覆层等优点。 因此,激光熔覆逐渐成为铜及其合金表面改性的手段之一。 尽管激光熔覆在铜表面改性方面取得了一定的成就和经济效益,但仍难以制备出高质量、高性能的功能性熔覆层。 主要问题是铜本身的物理和化学性质。<br>(1)对于覆层材料,由于铜与多种材料之间的润湿性差,界面结合强度弱,有必要研究更多的覆层材料体系,优化覆层粉末的组成,以确保覆层与基体实现无缺陷冶金结合。<br>(2)在制备工艺方面,铜对激光有极高的反射率。 采用复合表面处理技术可以提高对激光的吸收率。 涂层厚度的增加将增加裂纹发生的概率3|。 涂层质量无法保证。 因此,有必要探索操作灵活、加工成本低的熔覆工艺,进一步优化工艺参数,在保证熔覆层质量的前提下,最大限度地减少激光提供的能量损失。 此外,稀土元素和纳米材料的加入可以细化熔覆层的晶粒,有助于减少裂纹。<br>(3)关于镀层的微观结构和性能,目前的研究仅集中在铜表面的力学性能上,而关于镀层对电导率影响的研究较少。 激光熔覆技术对铜导电性影响的机理也难以解释清楚。 未来,铜的表面改性将向耐磨、耐腐蚀、耐高温、良好的导热性和导电性的综合性能发展。 此外,熔覆层的耐磨性、抗腐蚀机理和导电机理还需要进一步研究。
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
Laser cladding has the advantages of high energy density, small thermal effect on workpiece, metallurgical combination of cladding layer and matrix, compact structure of cladding layer and good surface performance of alloy cladding layer. Therefore, laser cladding has gradually become one of the means of surface modification of copper and its alloys. Although laser cladding has made some achievements and economic benefits in surface modification of copper, it is still difficult to prepare functional cladding layer with high quality and performance. The main problem is the physical and chemical properties of copper itself.<br>(1) For the cladding materials, because of the poor wettability between copper and various materials and the weak interface bonding strength, it is necessary to study more cladding material systems and optimize the composition of the coating powder to ensure that the cladding and the substrate can achieve flawless metallurgical bonding.<br>(2) In the preparation process, copper has high reflectivity to laser. The absorption rate of laser can be improved by using composite surface treatment technology. The increase of coating thickness will increase the probability of crack occurrence. Coating quality cannot be guaranteed. Therefore, it is necessary to explore the cladding process with flexible operation and low processing cost, further optimize the process parameters, and minimize the energy loss provided by laser on the premise of ensuring the quality of cladding layer. In addition, the addition of rare earth elements and nano materials can refine the grains of the cladding layer and help to reduce cracks.<br>(3) As for the microstructure and properties of the coating, the current research only focuses on the mechanical properties of the copper surface, while the research on the effect of the coating on the conductivity is less. The mechanism of the influence of laser cladding on the conductivity of copper is also difficult to explain. In the future, the surface modification of copper will develop to the comprehensive properties of wear resistance, corrosion resistance, high temperature resistance, good thermal conductivity and conductivity. In addition, the wear resistance, corrosion resistance mechanism and conductive mechanism of the cladding layer need further study.<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: