The surface texture of dried jujube fruits is a significant quality gr的简体中文翻译

The surface texture of dried jujube

The surface texture of dried jujube fruits is a significant quality grading criterion. This paper introduced a novel visual feature fusion based on connected region density, texture features, and color features. The single-scale Two-Dimensional Discrete Wavelet Transform was used to perform single-scale decomposition and reconstruction of dried Hami jujube image before visual features extraction. The connected region density was extracted by the two different algorithms, whereas the texture features were extracted by Gray Level Co-occurrence Matrix and the color features were extracted by image processing algorithms. Based on selected features which obtained by correlation analysis of visual features, the accuracy rate of the optimized Support Vector Machine classification model was 96.67%. In comparing with Extreme Learning Machine classification model and other fusion methods, the optimized Support Vector Machine based on selected visual features fusion was better.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
枣干果的表面质地是重要的质量分级标准。本文介绍了一种基于连接区域密度,纹理特征和颜色特征的新颖视觉特征融合。在视觉特征提取之前,利用单尺度二维离散小波变换对干燥的哈密枣图像进行单尺度分解和重构。连通区域密度通过两种不同的算法提取,而纹理特征通过灰度共生矩阵提取,颜色特征通过图像处理算法提取。基于对视觉特征进行相关分析得到的选定特征,优化后的支持向量机分类模型的准确率为96.67%。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
The surface texture of dried jujube fruits is a significant quality grading criterion. This paper introduced a novel visual feature fusion based on connected region density, texture features, and color features. The single-scale Two-Dimensional Discrete Wavelet Transform was used to perform single-scale decomposition and reconstruction of dried Hami jujube image before visual features extraction. The connected region density was extracted by the two different algorithms, whereas the texture features were extracted by Gray Level Co-occurrence Matrix and the color features were extracted by image processing algorithms. Based on selected features which obtained by correlation analysis of visual features, the accuracy rate of the optimized Support Vector Machine classification model was 96.67%. In comparing with Extreme Learning Machine classification model and other fusion methods, the optimized Support Vector Machine based on selected visual features fusion was better.
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
枣干的表面质地是枣干品质分级的重要指标。提出了一种基于连通区域密度、纹理特征和颜色特征的视觉特征融合方法。利用单尺度二维离散小波变换对哈密枣干图像进行单尺度分解和重构,然后进行视觉特征提取。采用两种不同的算法提取连通区域密度,采用灰度共生矩阵提取纹理特征,采用图像处理算法提取颜色特征。基于视觉特征相关分析得到的特征,优化后的支持向量机分类模型的准确率为96.67%。与极值学习机分类模型和其他融合方法相比,基于选定视觉特征融合的优化支持向量机具有更好的分类效果。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: