In this study, we choose BaTiO3 with Sr(OH)2·8H2O as a model system to的简体中文翻译

In this study, we choose BaTiO3 wit

In this study, we choose BaTiO3 with Sr(OH)2·8H2O as a model system to investigate the mechanism due to the following reasons. Building from the work that we have developed on CSP of BaTiO3 using Ba(OH)2·8H2O as a sintering flux,22 we now consider the chemistry of Sr(OH)2·8H2O as a similar flux for the densification of BaTiO3. In addition, Sr2+ is a well-known ion that can be easily incorporated into BaTiO3, demonstrated by both conventional sintering23 and hydrothermal reaction.24 Even in CSP, Sr is expected to be incorporated into the lattice host of BaTiO3 through the dissolution-precipitation process and also act as a tracer atom to investigate precipitation pathways. In previous studies, isotopes such as deuterated water in potassium dihydrogen phosphates (KDP), was used to trace a shell formation consistent with the direct evidence of precipitation and imaging the microstructure via time-of-flight secondary ion mass spectrometry (TOF-SIMS).25 In our case, we can more easily detect Sr using simple measurements, such as energy-dispersive X-ray spectroscopy (EDS), without overlaps in energy peak, and obtain nanoscale levels of spatial resolution. With these advantages, we consider the fabrication of BaTiO3 - Ba1-xSrxTiO3 via CSP with a flux of Sr(OH)2·8H2O. In addition, using transmission electron microscopy (TEM)-EDS analysis, we discuss CSP mechanisms at a nanoscale, enabling the fabrication of high dense ceramics at extremely low temperatures.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
在本研究中,由于以下原因,我们选择具有Sr(OH)2·8H2O的BaTiO3作为模型系统来研究其机理。根据我们在使用Ba(OH)2·8H2O作为烧结助熔剂对BaTiO3的CSP上开展的工作的基础上,22,我们现在认为Sr(OH)2·8H2O的化学性质与BaTiO3的致密化相似。此外,Sr2 +是一种众所周知的离子,可以很容易地掺入BaTiO3中,通过常规烧结23和水热反应均可证明。24即使在CSP中,Sr也有望通过溶解-沉淀过程掺入BaTiO3的晶格主体中。并作为示踪原子研究沉淀途径。在先前的研究中,同位素,例如磷酸二氢钾(KDP)中的氘化水,用飞行时间二次离子质谱仪(TOF-SIMS)来追踪与沉淀的直接证据相一致的壳形成并对其微观结构成像。25在我们的案例中,我们可以使用简单的测量方法更轻松地检测Sr,例如作为能量分散型X射线光谱仪(EDS),在能量峰上没有重叠,并获得了纳米级的空间分辨率。有了这些优点,我们考虑通过CSP用助熔剂Sr(OH)2·8H2O制备BaTiO3-Ba1-xSrxTiO3。此外,我们使用透射电子显微镜(TEM)-EDS分析,讨论了纳米级的CSP机制,从而能够在极低的温度下制造高密度陶瓷。我们可以使用简单的测量(例如能量色散X射线光谱法(EDS))更容易地检测Sr,而没有能量峰的重叠,并获得纳米级的空间分辨率。有了这些优点,我们考虑通过CSP用助熔剂Sr(OH)2·8H2O制备BaTiO3-Ba1-xSrxTiO3。此外,我们使用透射电子显微镜(TEM)-EDS分析,讨论了纳米级的CSP机制,从而能够在极低的温度下制造高密度陶瓷。我们可以使用简单的测量(例如能量色散X射线光谱法(EDS))更容易地检测Sr,而没有能量峰的重叠,并获得纳米级的空间分辨率。有了这些优点,我们考虑通过CSP用助熔剂Sr(OH)2·8H2O制备BaTiO3-Ba1-xSrxTiO3。此外,我们使用透射电子显微镜(TEM)-EDS分析,讨论了纳米级的CSP机制,从而能够在极低的温度下制造高密度陶瓷。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
In this study, we choose BaTiO3 with Sr(OH)2·8H2O as a model system to investigate the mechanism due to the following reasons. Building from the work that we have developed on CSP of BaTiO3 using Ba(OH)2·8H2O as a sintering flux,22 we now consider the chemistry of Sr(OH)2·8H2O as a similar flux for the densification of BaTiO3. In addition, Sr2+ is a well-known ion that can be easily incorporated into BaTiO3, demonstrated by both conventional sintering23 and hydrothermal reaction.24 Even in CSP, Sr is expected to be incorporated into the lattice host of BaTiO3 through the dissolution-precipitation process and also act as a tracer atom to investigate precipitation pathways. In previous studies, isotopes such as deuterated water in potassium dihydrogen phosphates (KDP), was used to trace a shell formation consistent with the direct evidence of precipitation and imaging the microstructure via time-of-flight secondary ion mass spectrometry (TOF-SIMS).25 In our case, we can more easily detect Sr using simple measurements, such as energy-dispersive X-ray spectroscopy (EDS), without overlaps in energy peak, and obtain nanoscale levels of spatial resolution. With these advantages, we consider the fabrication of BaTiO3 - Ba1-xSrxTiO3 via CSP with a flux of Sr(OH)2·8H2O. In addition, using transmission electron microscopy (TEM)-EDS analysis, we discuss CSP mechanisms at a nanoscale, enabling the fabrication of high dense ceramics at extremely low temperatures.
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
在本研究中,我们选择钛酸锶与锶(OH)2·8H2O作为模型体系来研究其机理。根据我们用Ba(OH)2·8H2O作为烧结助焊剂对BaTiO3 CSP的研究,22我们现在认为Sr(OH)2·8H2O的化学性质与BaTiO3的致密化类似。此外,Sr2+是一种众所周知的离子,可以很容易地并入BaTiO3中,这可以通过常规烧结23和水热反应来证明。24即使在CSP中,Sr有望通过溶解-沉淀过程与钛酸钡晶格相结合,并作为示踪原子研究沉淀途径。在以前的研究中,同位素,如磷酸二氢钾(KDP)中的氘化水,被用来追踪与沉淀直接证据一致的壳层形成,并通过飞行时间二次离子质谱(TOF-SIMS)成像微观结构。25在我们的例子中,我们可以更容易地使用简单的测量方法,如能量色散X射线光谱(EDS)来检测Sr,而不需要能量峰值重叠,并获得纳米级的空间分辨率。利用这些优点,我们考虑了用Sr(OH)2·8H2O的CSP工艺制备BaTiO3-Ba1-xSrxTiO3,并利用透射电子显微镜(TEM)-EDS分析,在纳米尺度上讨论了CSP的形成机理,从而可以在极低温度下制备高密度陶瓷。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: